What Drives Market Prices in the Wine Industry? Estimation of a Hedonic Model for Italian Premium Wines*

Luigi Benfratello^{a,b}, Massimiliano Piacenza^b, Stefano Sacchetto^c

^aFaculty of Economics, University of Turin, Corso Unione Sovietica 218bis, 10134 Torino, Italy.

E-mail: <u>benfratello@econ.unito.it</u>

^bCeris-CNR, Institute for Economic Research on Firms and Growth, Italian National Research Council,

Email: M.Piacenza@ceris.cnr.it

^cLondon Business School, Regent's Park, London NW1 4SA, United Kingdom.

E-mail: ssacchetto.phd2004@london.edu

Abstract. The aim of this paper is to provide new evidence on the factors affecting wine prices on both methodological and factual grounds. On the methodological ground, this study is the first to apply a general Box-Cox transformation within the context of hedonic models which exploit all the variables (objective and sensorial characteristics, reputation) pointed out by previous literature as relevant in driving market prices. On the factual ground, the paper fills the lack of empirical evidence on the issue for Italy, one of the leading wine producers, by using a large dataset on two premium quality wines (Barolo and Barbaresco) covering the 1995-1998 vintages. Our results support the evidence obtained using data from other countries, showing that sensorial traits, the reputation of wines and producers, as well as objective variables are all important factors influencing the consumers' willingness to pay. More importantly, by resorting to a non-nested statistical test (Vuong, 1989) we compare two alternative specifications (taste vs. reputation) and find that the reputation model significantly outperforms the one containing the taste variables. In turn, this result suggests that the reputation model is closer than the taste one to the true model that generated the data.

Keywords: Hedonic pricing; Box-Cox estimation; Sensorial characteristics; Reputation; Vuong test

JEL Classification: C52; D43; L66

^{*} Paper presented at the 2nd Annual International Industrial Organization Conference (IIOC), Kellogg School of Management, Northwestern University, Chicago, April 23-24, 2004. We wish to thank Paola Giordano, Rosalba Ignaccolo, and Alessandro Sembenelli for helpful comments on an earlier draft.

WORKING PAPER CERIS-CNR

Working paper N. 11/2004 Anno 6, N° 11 – 2004 Autorizzazione del Tribunale di Torino N. 2681 del 28 marzo 1977

Direttore Responsabile Secondo Rolfo

Direzione e Redazione Ceris-Cnr Istituto di Ricerca sull'Impresa e lo Sviluppo

Sede di Torino Via Avogadro, 8 10121 Torino, Italy Tel. +39 011 5601.111 Fax +39 011 562.6058 segreteria@ceris.cnr.it http://www.ceris.cnr.it

Sezione di Ricerca di Roma Istituzioni e Politiche per la Scienza e la Tecnologia Via dei Taurini, 19 00185 Roma, Italy Tel. 06 49937810 Fax 06 49937884

Sezione di Ricerca di Milano Dinamica dei Sistemi Economici Via Bassini, 15 20121 Milano, Italy tel. 02 23699501 Fax 02 23699530

Segreteria di redazione Maria Zittino e Silvana Zelli m.zittino@ceris.cnr.it

Distribuzione Spedizione gratuita

Fotocomposizione e impaginazione In proprio

Stampa In proprio

Finito di stampare nel mese di January 2005

Copyright © 2004 by Ceris-Cnr

All rights reserved. Parts of this paper may be reproduced with the permission of the author(s) and quoting the source. Tutti i diritti riservati. Parti di questo articolo possono essere riprodotte previa autorizzazione citando la fonte.

CONTENTS

1.	Motivation and previous literature	5
2.	Data Description	7
	2.1. The Barolo and Barbaresco wines	
	2.2. The variables	8
3.	Empirical strategy	10
4.	Results	12
5.	Final remarks	13
DA	ATA APPENDIX	18
Re	ferences	20
W	orking Paper Series (2004-1993)	-V

The so-called *hedonic price technique* relates the price of a differentiated - product to its characteristics, whereby allowing an estimate of the consumers' evaluation of the latter. Classic applications of this technique have analysed durable goods. such as cars, computers, and houses. However, in the last decade hedonic price analyses have been performed also for some non-durable goods, in particular wine. Whereas wine is a widely differentiated product and therefore a suitable candidate for this sort of empirical studies, it is difficult to identify the proper characteristics which affect prices. The relevant characteristics could relate to tasting properties (the so-called sensorial variables), such as the wine's aroma, body, and finish. However, these variables could be hardly recognised by consumers, in particular in advance with respect to purchase (in fact, wine is an experience good). Given the imperfect information setting, other kinds of variables become additional candidates as determinants of wine price, in primis wine reputation, as well as observable traits appearing on the bottle label.

Not surprisingly, the very few hedonic analyses carried out so far on wine have explained price formation with different sets of variables. Broadly speaking, two different approaches have been followed. The first one (Combris et al., 1997; 2000) examines the role of wine's sensorial characteristics, alongside with observable "objective" attributes such as vintage, denomination, grape variety and the like, which usually appear on the label. This approach claims that consumers recognize the latter more easily, so that the former tends to be insignificant in determining the market price. The second approach (Landon and Smith, 1997; 1998) points out the importance of the reputation of wines and producers among consumers. Imperfect information (Akerlof, 1970) could be overcome if producers acquire reputation over time, so that expected wine quality could be proxied by long-term reputation. In turn, reputation would influence market prices and it would seem economically far more important than *current* quality as measured by overall sensory quality scores (e.g. evaluation given by professional tasters, as for example those provided by Wine Spectator magazine). To the best of our knowledge, no previous paper has attempted to jointly use all these kinds of variables (objective, sensorial, reputation and quality) in order to assess their relative importance.

The main purpose of this paper is fill this gap and try to shed light on the relative importance of the aforementioned sets of characteristics on price. To this end, it exploits a unique data set on two Italian premium wines (Barolo and Barbaresco) produced in a very restricted area in the Piedmont region in Northern Italy. Compared with those used by previous literature, our dataset enjoys at least two advantages. Firstly, it contains all the variables which might influence wine price. Secondly, observations are very homogeneous, in terms of both origin and characteristics, whereby allowing us to focus on single producer and single wine reputation instead of collective reputation (i.e. reputation of groups of producers and wines). As a secondary purpose, our analysis intends to provide evidence on the factors driving wine price also for Italy which, in spite of its leading role as a wine producer, has not been so far the object of empirical analyses.

By a way of anticipation, our results show that all various kinds of variables, except current quality, play an important role in explaining market prices. More importantly, we find that a hedonic model including objective and reputation variables outperforms, on statistical grounds, a model with objective and sensorial characteristics. In turn, this suggests that a greater amount of information on how the wine price is formed is contained in the reputation specification.

The rest of the paper unfolds as follows. The next section motivates this paper by reviewing the relevant previous literature on hedonic price in the wine industry. Section 3 presents the main characteristics of the two wines and describes the dataset used. Section 4 specifies the empirical strategy whereas section 5 presents the ensuing econometric results. Section 6 provides some final remarks and a data appendix concludes the paper.

1. Motivation and previous literature

Since the seminal contributions by Griliches (1971) and Rosen (1974), several papers have estimated, using the hedonic price technique, the implicit prices of some characteristics which differentiate closely related products. In order to

illustrate the approach in the simplest possible manner, let us consider two units of a given good that are identical except for a particular attribute. One would expect their prices to differ. If consumers place a value on this characteristic, the difference in market price between the two units should, *ceteris paribus*, express their *willingness to pay* for an improvement in the attribute. More generally, it is possible to isolate the contribution of various factors to the market price through the use of econometric techniques.¹

Not surprisingly, these studies have mostly used data on housing (e.g. Brookshire et al., 1981; Can, 1992), cars (e.g. Griliches, 1971; Murray and Sarantis, 1999), and personal computers (e.g. Chow, 1967; Berndt and Griliches, 1990; Baker, 1997) which lend themselves to this kind of analysis being highly and differentiated with easy-to-identify characteristics. In recent years, however, researchers have also analysed the relationship between prices and characteristics for some nondurable goods. In particular, a few papers have recently estimated hedonic price functions for wine industry, as wine is highly differentiated and then suitable for hedonic analyses. Generally speaking, three main types of variables appear in the specification of hedonic models for the wine price. A first basic category embraces the so-called objective characteristics - such as the wine's year of vintage, denomination (i.e. whether the wine comes from a particular "cru"), region, or grape variety - which usually appear on the label and

Formally, following Johansson (1987), suppose any unit x of a given good can be completely described by k characteristics. Then the price of this good is a function of its attributes:

$$P_x = f_x(C_{x1},...,C_{xk})$$
 for all x

where C denotes good's characteristics. This is a hedonic or implicit price function. In fact, this function is a locus of equilibrium consumers' marginal willignesses to pay for improvements in the k attributes of good x.

Supposing that a particular form of the hedonic function has been estimated, the coefficient for the partial derivative with respect to the jth characteristic

$$\frac{\partial P_x}{\partial C_{xj}} = f_{xC}(C_{xj})$$

indicates the increase in maket equilibrium expenditure on good x that is required to obtain the good with one more unit of attribute C_{xj} (for more details on this issue see Freeman, 1979).

are therefore easy to identify by consumers. The two remaining sets of variables relate to wine quality. In fact, a peculiar feature of wine is that quality attributes, reasonably expected to affect consumer preferences and then market prices, are not easy to evaluate objectively. To this regard, previous literature has focused on two broad groups of variables which are related to quality evaluations, inserting them into hedonic regressions alongside with objective characteristics.

A first approach rests on the argument that wine quality is generally recognized to depend on sensory evaluations. Although tastes are intrinsically subjective, wine experts claim that few codified characteristics univocally determine the quality of the wine and, in turn, its price. These codified characteristics are the so-called sensorial variables such as the wine's aroma, finish or harmony of components. According to this line of reasoning, Combris et al. (1997, 2000) use data for Bordeaux and Burgundy wine to estimate a hedonic price function and what is referred to as a jury grade equation to explain the variation in price and quality respectively. In both studies sensorial characteristics are found to be important in determining wine quality, while price is strongly explained by objective attributes appearing on the label of the bottle. As for the role of sensorial variables in price formation, the evidence is partially inconclusive. Indeed, unlike the Bordeaux study, where most of sensorial characteristics have poor relevance, results of the second analysis show three sensorial attributes (acidity, fat, concentration) having a significant impact on the wine price in all estimates. Notwithstanding, the authors conclude that consumers may decide to vary their willingness to pay for wine primarily according to observable attributes.² In fact, given the context of imperfect information, objective characteristics (in particular ranking and vintage) are much easier and less costly to identify by consumers than sensorial attributes.³

A second approach stresses the importance of the *reputation* of wines and producers among consumers. Imperfect information could be overcome if producers acquire reputation over

The relevance of the objective traits is also underlined in Oczkowski (1994).

³ Indeed, the acquisition of information about sensorial variables would require tasting, learning, and buying wine guides.

time, so that well-established or expected wine quality could be proxied by long-term reputation, which, in turn, would influence market prices. Furthermore, current quality could be proxied by overall sensory quality score measures from widely accessible published wine guides. However, consumers may not possess this information before price is determined and whether this information increases consumers' knowledge of the product is therefore unclear. Following this line of reasoning, Landon and Smith (1997) use an unbalanced panel of 196 red wines (559 observations) from the five Bordeaux vintages of 1987 to 1991 and estimate two hedonic price equations. The first equation includes only objective variables and an overall sensory quality index; the second one considers observable characteristics and reputation variables, the latter being referred to both single wines (individual reputation) and groups of wines (collective reputation). Apart from confirming the relevance of the objective traits, the authors find that long-term reputation explains much more variation in the consumers' willingness to pay than does short-term quality changes and that ignoring reputation indicators leads to overstate the impact of current quality on market price. This finding has been corroborated by focusing only on a balanced panel of 151 wines for the 1989 and 1990 (Landon and Smith, Subsequent applications to Australian premium wines by Oczkowski (2001) and to premium wines from North America, Australia, South Africa and Chile by Schamel (2000) support the presence of significant reputation effects. However, while Oczkowski's results indicate an irrelevant impact of current quality, the econometric evidence in Schamel points to highly significant implicit prices also for overall sensory wine quality.

Summing up, the previous literature on hedonic wine prices has alternatively employed, in addition to objective characteristics, sensorial and reputation variables in order to take into

In this study expected quality is explicitly assumed to depend on reputation according to a forecasting equation which is estimated jointly with the hedonic price function, the latter having as arguments current quality and expected quality. account the effects of quality attributes. However, to the best of our knowledge, no study has so far attempted to jointly use both types of factors to assess their relative importance in determining market prices. As a consequence, whether taste or reputation is more relevant in explaining wine price is still unclear. To shed light on the issue, this paper exploits a very rich dataset embracing information on all kinds of aforementioned variables for two premium Italian wines: Barolo and Barbaresco. The description of the dataset is the object of the next section.

2. Data Description

2.1. The Barolo and Barbaresco wines

The present paper exploits a unique dataset collecting data on two premium Italian red wines: Barolo and Barbaresco. Although the former is more widely known than the latter, these two wines have several common features which justifies the joint analysis put forth in this paper. In particular, the Disciplinary Texts of their "Denominazione d'Origine Controllata e Garantita" (DOCG) label specifies that the basic grape must be the same for both wines (the Nebbiolo variety). Furthermore, both wines come from the same area in the Piedmont region in Northern Italy, the Langhe, which is quite restricted (only 1,930 hectares). In turn, the amount produced is very small (approximately 12 million bottles per year) and the two wines display quite similar sensorial characteristics and vintage quality.⁵ The most noteworthy differences between the two wines concern the maturing process imposed by the Disciplinary Texts (2 years for the Barbaresco wine and 3 for Barolo) and the production areas, very close to each other but carried out in different villages.

The production of Barolo and Barbaresco wines is very fragmented, due to the large number of landowners: there are approximately 750 producers of Barolo and 380 producers of Barbaresco. Accordingly, the average quantity produced per

For comparison purposes, consider that the Bordeaux region is much wider (250,000 hectars), production is larger (approximately 660 million bottles) and uses five different grape varieties.

firm is very low: only 4.15% of Barolo winemakers produce more than 100,000 bottles, whereas for Barbaresco this figure reduces to 2%.

2.2. The variables

The variables used in this paper have been collected by inspecting several published sources and through direct or phone interviews with the wine producers carried out during the July – September 2002 period.⁶

In particular, our starting point in constructing the database has been the analysis of two leading wine guides: *Wine Spectator*, probably the best known wine guide which has also been used by some previous literature (e.g. Landon and Smith, 1997; 1998), and the *Duemila Vini* guide edited by the *Italian Association of Sommeliers* (professional wine tasters, *AIS* henceforth). Both guides might be reasonably supposed to be independent from wine producers and therefore represent reliable sources of information.

We identified all the Barolo and Barbaresco wines cited in the two guides for the 1995-97 vintages for Barolo and the 1996-98 vintages for Barbaresco (i.e. the last three vintages for which information was available in 2002). We kept only those 227 wines for which data were available for at least two of the three years (603 observations, 111 different producers). Henceforth, we will use the term "bottle" to identify a specific producer-wine-year observation.

From these two guides we retrieved information on several variables of interest. Firstly, *Wine Spectator* reports an *overall* judgement of the wine, ranging from a minimum of 50 to a maximum of 100 (variable *VSPE*). Secondly, from the *AIS* guide we derived wines' alcoholic gradation (*ALC*). Finally, from both guides we derived: *i*) data on quantity produced (*BOTT*); *ii*) a *specific* judgement on six *sensorial* traits for each wine

(INTE, FINE, COMP, HARM, TANI, FINI); iii) three objective variables, namely vintage (AN97), type, i.e. whether the wine is a Barolo or a Barbaresco (TYPE), and denomination, i.e. whether the label identifies a particular "cru" (DEN). It is worthwhile to give some details about the three objective traits and their expected impact on wine price. As for vintage, all the four years considered in this paper (1995–1998) are good quality vintages. However, 1997 is unanimously considered the best year and therefore is the only vintage we single out through a dummy variable (AN97) in the econometric analysis to check the presence of a positive effect on market price. The variable TYPE is included in the hedonic model to take into account that, in spite of the common high quality standard, Barolo wine is more widely known than Barbaresco and this circumstance could lead to a higher willingness to pay for the former. Finally, the mark on the label of a special denomination ("cru") in addition to DOCG, such as, for instance, the origin from particular vineyards, is likely to represent an important distinction factor for consumers, able to push wine price upward.

The very localised production area allowed us to keep also direct and phone interviews with producers. Through these contacts we recovered information on prices and on whether wine passed an aging period in barrique barrels. In particular, we asked producers to report the retail price at which they would sell the bottles directly to the consumer in their estate wineshop, tax included. Inspection of Table 1, which presents the descriptive statistics for the variables, reveals the very large variability in price, which ranges from 11.5 to 93 euros per bottle. Barrique barrels are smaller and manufactured from higher quality oak than traditional ones, so that they convey a special taste to the wine. Several producers nowadays blend wine aged in these barrels with wine aged in traditional barrels. As this information is not reported in the guides (nor on the label) we asked producers whether their wine contains wine aged in barrique barrels.7

For more detailed information on variable definition and sources refer to the Appendix 1 at the end of the paper. For descriptive statistics on the variables see Table 1. For more details on data collection and variable caracteristics see Sacchetto (2002).

⁷ The direct contact with producers allowed us also to check data on the quantity produced and to fill some missing values in the alcoholic gradation.

Table 1. Descriptive statistics of the variables

Variable	Mean	St.dev	Min	Max	% = 0	% = 1	% = 2	% = 3
PRICE	Price							
p	28.92	11.55	11.36	93.00				
OBJECTIVE C	HARACTERIST	ICS						
AN97					65.67	34.33		
TYPE					28.19	71.81		
ALC	13.79	0.36	13.0	14.5				
DEN					17.91	82.09		
CURRENT QUA	ALITY							
VSPE	89.12	3.97	69	100				
REPUTATION								
 Single win 	e reputation a	ccording to It	talian guide	es:				
ECGAM					88.06	11.94		
ECMAR					85.41	14.59		
<i>ECVER</i>					69.68	30.02		
 Single pro 	ducer reputation	on:						
FIT	3.18	4.20	0	29				
PREST	33.02	31.61	0	131				
FAMA					86.57	13.43		
SENSORIAL CH	HARACTERIST:	ICS						
 Olfactory 	characteristics	:						
INTE						5.47	49.09	45.44
FINE						14.10	85.90	
COMP						22.55	77.45	
Gustatory	characteristics	s:						
HARM						2.32	37.31	60.36
TANI						20.56	79.44	
FINI						7.46	40.13	52.40
OTHER CHARA	OTHER CHARACTERISTICS							
BOTT	15.9	27.8	1	260				
BARR					53.07	46.93		

Notes: mean, standard deviation, minimum and maximum are reported for continuous variables; the percentage of observation falling into a given category is provided for discrete variables. Price is in current euro. Production is in thousand bottles. The number of observations is 603.

Finally, we relied on wine publications to construct two crucial groups of variables, those linked with the reputation of wines and producers. As for single wine reputation, we used three widely known Italian guides (I vini di Veronelli by Veronelli, Guida dei Vini Italiani by Maroni, and Guida ai Vini d'Italia by AA. VV.) to construct three bottle-specific dummy variables (ECVER, ECMAR, ECGAM, respectively) representing single wine reputation among consumers. In fact, these guides select, according to various criteria, "best" wines, which soon become well known among consumers. Each of our dummies takes a value of 1 (and 0 otherwise) if the bottle has been selected as one of these "best" wines. The reason why we include all the three variables is twofold. On the one hand, guides might differ in their judgment, so that the choice of "best" wines differ from one guide to the other. On the other hand, we do not know the sampling process of these guides, i.e. they might select "best" wines not among those in our whole sample, but among smaller, and possible different, sub-samples. As far as the reputation of producers is concerned, we constructed three producer-specific time-invariant variables. The first one, labeled FIT, represents producers' reputation in Italy: it is the number of excellence ratings given by the Guida ai Vini d'Italia publication over the 1987-2002 period to any wine (not only Barolo and Barbaresco) of a single producer.8 Likewise, the variable PREST captures producers' reputation abroad: it is the number of ratings provided to each producer by the Wine Spectator magazine. Finally, we constructed a dummy variable (FAMA) which takes a value of 1 only for producers ranked in some well known charts (see the Appendix 1 for further details).

3. Empirical strategy

Although the hedonic price technique has been widely used in the empirical applications to study the process of price formation in several

⁸ This guide has been preferred to the other two (*I vini di Veronelli* and *Guida ai vini d'Italia*) for several reasons: it is the best known, it covers the largest set of wines, and it is the most selective in providing excellence ratings.

markets, economic theory provides little guidance about the functional form of the dependence of price on good's attributes. The research strategy followed by the previous literature on the wine industry is characterized by the preliminary choice of the hedonic price model to estimate (i.e. sensorial or reputation), and the subsequent selection of the appropriate functional form (e.g. log-log, log-linear, reciprocal, and the like) according to some specification tests (e.g. the Reset test). The present study sharply departs from this strategy, as we neither select ex ante the model type nor its functional form.

More precisely, the research line of this paper relies on three steps. As the aim of the paper is to screen among different models without imposing any structure a priori, we firstly estimate different Box-Cox transformations (Box and Cox, 1964) of the dependent and independent variables for each of the two models suggested by previous literature (the Combris et al. specification – CLV henceforth – and the Landon & Smith one – LS henceforth), so as to let the data "suggest" the proper specification of the hedonic price function. We then select the best sensorial and the best reputation model on the basis of standard likelihood ratio (LR) statistics. In the second step, we simplify the two preferred models by zero-restrictions LR tests coefficients. As the simplified best models are non-nested, in the final stage we compare them through the Vuong (1989) test.

At the first stage, we consider several variants of the Box-Cox transformations. The most general one we estimate is:

$$p^{(\theta)} = \sum_{j \in J} \beta_j x_j^{(\lambda)} + \sum_{k \in K} \gamma_k x_k + \varepsilon$$
 [1]

where $V^{(b)}$ – for a generic variable V = p, x and a generic parameter $b = \theta$, λ – denotes the Box-

Goodman (1978) carried out one of the first applications of the Box-Cox transformation within the context of hedonic prices in the housing market and found that a linear specification is generally rejected in favor of the Box-Cox model. Successively, Cropper *et al.* (1988) performed a Monte Carlo analysis to study the behavior of six different hedonic price specifications, pointing out the better performance of the Box-Cox regression as for the estimates of marginal attributes prices.

Cox metric

$$V^{(b)} = \begin{bmatrix} \frac{V^b - 1}{b} & \text{for } b \neq 0\\ \ln V & \text{for } b \to 0, \end{bmatrix}$$
 [1b]

J is the set of regressors x_j which can be sensibly logged, and K is the set of regressors x_k which cannot sensibly logged, including variables such as constant term, dummies, time trends, etc. The crucial feature of this model is that both regressand (p) and at least a set of regressors (J) are transformed through a different Box-Cox parameter (θ) and λ respectively). We will refer to this model as THETA.

A slightly less general specification than [1] is as follows:

$$p^{(\lambda)} = \sum_{j \in J} \beta_j x_j^{(\lambda)} + \sum_{k \in K} \gamma_k x_k + \varepsilon$$
 [2]

where both regressand and at least a set of regressors are transformed through the *same* Box-Cox parameter (λ). We will refer to model [2] as LAMBDA.

Proceeding with further simplifications, we can imagine to transform only (a set of) regressors or the regressand only, leading to the following specifications:

$$p = \sum_{i \in J} \beta_j x_j^{(\lambda)} + \sum_{k \in K} \gamma_k x_k + \varepsilon$$
 [3]

$$p^{(\theta)} = \sum_{j \in J} \beta_j x_j + \sum_{k \in K} \gamma_k x_k + \varepsilon$$
 [4]

Again, we will refer to model [3] as LIN-RHS and to model [4] as LHS-LIN.

Note finally that model [1] can be further simplified by letting $\theta = \lambda = 0$ (LOG-LOG model), $\theta = \lambda = 1$ (LIN-LIN model), $\theta = 0$ (LOG-RHS model) and $\lambda = 0$ (LHS-LOG model).

All eight models (models [1]-[4] and the four LOG and LIN transformations) have been estimated for both the CLV and the LS specifications. Variables common to both sets of models are the *objective* and other characteristics (AN97, TYPE, ALC, and DEN;

BOTT and BARR). We included only INTE, FINE, COMP, HARM, TANI, FINI (sensorial characteristics) in the CLV models and only VSPE (current quality)¹⁰, ECGAM, ECMAR, ECVER (individual wine reputation), FIT, PREST, FAMA (individual producer reputation) in the LS specifications. Notice that the set of transformed variables J includes ALC, BOTT, VSPE, FIT and PREST, whereas the remaining regressors belong to the set K of untransformed variables.¹¹ Once we have estimated all the 16 hedonic models, we select the one best fitting the data within each category (CLV, LS) using standard LR tests.

For the sake of parsimony, in the second stage we simplify the two preferred CLV and LS specifications through a stepwise procedure: we gradually delete the least significant variable and stop only when all the estimated coefficients for retained regressors are significant at least at the 5% level.

Finally, we resort to the Vuong (1989) test to compare the *best simplified* models. As suggested by Gasmi, Laffont and Vuong (1992), this statistic must be adjusted to take into account the different number of parameters included in the compared models. Three adjustments have been proposed by the literature, differing in the penalties for the number of estimated parameters, namely the Hannan and Quinn (1979), the Akaike (1973), and the Schwarz (1978) correction factors. In order to check the robustness of our results, we decided to apply all the three adjustments. We will refer to these corrected statistics as "Vuong Adjusted Likelihood Ratio" (VALR).

¹⁰ In a preliminary regression we checked that wine quality (*VSPE*) is well explained by the sensorial characteristics. These results, available upon request to the authors, confirm that the *Wine Spectator* rating is given on the basis of some widely recognised and objective criteria, whereby justifying the use of this variable in the price equations.

¹¹ To avoid tranformations of zero values, we replaced the variables FIT with (FIT+1) and PREST with (PREST+1). Furthermore, we estimated all models by standardizing the dependent variable by its geometric mean. As discussed, among the others, in Davidson and MacKinnon (1993, chapter 14), this transformation does not affect the values of the estimated λ and θ . However, it does affect the values of β and γ ; therefore, in testing the significance of these coefficients we will rely on LR and not on Wald tests which, as is well known, are not invariant with respect to non-linear transformations of the variables.

4. Results

All the models above have been estimated using the Stata software, version 8.0. The results are presented in Tables 2 to 8.

of the eight Estimates Box-Cox specifications for the CLV-type hedonic equation (or sensorial model) are shown in Table 2. Both parameters of the general model (THETA) have reasonable magnitude and are statistically significant at the 5% level. Proceeding across the possible simplifications, we notice that the estimated parameter θ (i.e. the one transforming the dependent variable p) proves to be quite stable (values ranging from -0.52 and -0.50), whereas the estimates of λ (the parameter transforming the independent variables) show high variability. Comparisons between the THETA model and its various simplifications are presented in Table 3. Not surprisingly, all the specifications where the transformation of regressand is restricted to a given value (LIN-RHS, LOG-LOG, LIN-LIN, LOG-RHS) are strongly rejected whereas the chisquared statistic for the other models is much lower. Notwithstanding, the only specification not rejected at the 10% level is the LAMBDA model.

As for the LS-type hedonic equation (or reputation model), estimates of the Box-Cox transformations reported in Table 4 reveal remarkable differences with respect to those of the CLV-type models. In fact, in the THETA specification the transformation of the independent variables (λ) is 0.49 and proves to be statistically significant, whereas the parameter θ is modest in value and insignificant. Again, the estimates for parameter θ are quite robust across the different specification and close to zero, while λ shows larger variability (ranging between 0.06 and 1.27). LR tests comparing general and restricted specifications (see Table 5) clearly favour the LOG-RHS model where the value of θ is constrained to be zero.

We then simplified the two preferred Box-Cox transformations for the CLV (LAMBDA) and LS (LOG-RHS) specifications by applying

the stepwise procedure described above. Coefficients estimates for the general and simplified versions of the two models are presented in Table 6. As the values of retained explanatory variables are very similar in both cases, we will comment only upon the results of the restricted versions.

The estimated parameters for the CLV (LAMBDA) hedonic model (third column) support the importance of both the objective and the sensorial variables. In fact, the dummies for the 1997 vintage (AN97 = 1), for Barolo wines (TYPE = 1), and for a special denomination (DEN = 1) turn out to be positive and significant at the 2% level, whereby confirming our a priori. Turning to sensorial characteristics, the only significant one is the harmony among wine components (HARM): this finding can be explained as this trait is the easiest among the sensorial ones to be recognised by consumers. Finally, the number of bottles (BOTT) exerts a positive and significant impact on prices.

The fifth column of Table 6 presents the results of the LS (LOG-RHS) hedonic model. All the coefficients have the expected sign. Moreover, the variables representing individual wine reputation (ECGAM, ECVER, ECMAR) and producer reputation (FIT, FAMA, PREST) are all statistically significant at the 1% level. Estimated coefficients for objective and other characteristics have the same sign as those of CLV (LAMBDA) model, the only exceptions being the dummy for the use of barrique barrels (BARR), which turns out to exert a positive impact on prices, and the quantity produced (BOTT), which proves to have a negative sign. The latter result can be interpreted in the light of a possible "snob" effect on prices due to a limited availability of a particular bottle.

Table 7 shows absolute marginal effects on price for the variables included in the restricted CLV and LS models. Rather comfortably, impacts tend to be quite similar for those regressors appearing in both specifications. Consumers appraise the 1997 vintage from 2 to 2.8 Euros and Barolo type with respect to Barbaresco from 1.6 to 1.9 Euros. Willingness

to pay for a special denomination ranges from 4.4 to 6.2 Euros.

As for sensorial traits, an increase in harmony from a medium to a high level (from 2 to 3) is valued more than 5 Euros. Single wine reputation factors (*ECGAM*, *ECMAR*, *ECVER*) prove to exert marginal effects of similar magnitude (around 3 Euros), whereas the producer reputation variable implying the largest variation in the willingness to pay is by far *FAMA* (12.5 Euros). The latter result confirms how the inclusion of a producer in some well known charts is important from a consumer perspective.

Finally, we proceeded to perform the main purpose of this study, namely the comparison of the relative importance of *sensorial* and *reputation* factors in determining market prices. To this end, we ran a Vuong (1989) test for non-nested models. In order to take into account the 0different number of estimated parameters in the CLV (LAMBDA) and LS (LOG-RHS) specifications, we adjusted the test statistic using the three correction factors mentioned above – Hannan and Quinn (1979), Akaike (1973), and Schwarz (1978) – and obtained the VALR values reported in Table 8.

Inspection of VALR-statistics reveals that, even applying the correction factor according the highest penalty for the number of estimated parameters (Schwarz, 1978), the model LS (LOG-RHS) significantly outperforms the CLV (LAMBDA) specification, the P-value of the test being always less than 1%. This leads to conclude that the former model is closer than the latter to the true model which generates the data and therefore contains a greater amount of information about the wine price formation. In turn, this finding points to a major role of reputation compared with sensorial traits in explaining differences in the consumers' willingness to pay.

5. Final remarks

This paper aimed at providing new empirical evidence on factors affecting wine prices on both methodological and factual grounds. In particular, building on previous literature, which has highlighted the importance of objective, sensorial, and reputation variables, the study intended to assess the role played by sensorial characteristics versus reputation. taking into account the effect of other variables. To this end, we focused on two premium Italian red wines, Barolo and Barbaresco, whereby filling the gap of no empirical evidence on the issue for Italy, and constructed, through the inspection of wine publications as well as interviews with producers, a database which collects all these sorts of variables.

The results from the general Box-Cox estimation of different sensorial (CLV) and reputation (LS) models, which does not impose *a priori* restrictions on the form of the hedonic price function, pointed out that, on the basis of a non-nested statistical test (Vuong, 1989), the LS specification is preferred to the CLV. As a consequence, we can infer that, although both sets of variables are relevant factors influencing consumers' preferences and their willingness to pay, the reputation acquired by wines and producers during the years is more important than taste in driving market prices.

Overall, the factual evidence on Italy provided by this study confirms the results obtained using data from other countries: the consumers' choice with respect to wine is a quite complex process which involves a variety of factors: objective characteristics, sensorial traits, and reputation. In this light, it could be interesting to support these findings with further empirical analyses of consumer preferences based on alternative techniques, such as, for instance, a contingent evaluation approach.

Table 2. Sensorial (CLV) model estimates for different Box-Cox transformations

Specification		Box-Cox parameters	<i>P</i> -value	$\operatorname{Log} L$
θ, λ	[ТНЕТА]	$\lambda = 2.28$ $\theta = -0.52$	0.025 0.000	-152.96
$\theta = \lambda$	[LAMBDA]	$\lambda = -0.52$	0.000	-153.69
θ = 1, λ	[LIN-RHS]	λ = - 0.92	0.043	-284.16
θ , $\lambda = 1$	[LHS-LIN]	$\theta = -0.52$	0.000	-154.57
$\theta = \lambda = 0$	[LOG-LOG]			-169.36
$\theta = \lambda = 1$	[LIN-LIN]			-288.92
θ = 0, λ	[LOG-RHS]	$\lambda = 2.52$	0.048	-168.35
θ , $\lambda = 0$	[LHS-LOG]	$\theta = -0.50$	0.000	-155.25

Note: we report p-values of the null hypothesis that each coefficient is equal to 0.

Table 3. Comparison among sensorial (CLV) specifications by LR test

Model [.] versus Model [.]	χ²-statistic	<i>P</i> -value
[LAMBDA] versus [THETA]	1.47	0.226
[LIN-RHS] versus [THETA]	262.4	0.000
[LHS-LIN] versus [THETA]	3.24	0.072
[LOG-LOG] versus [THETA]	32.82	0.000
[LIN-LIN] versus [THETA]	271.93	0.000
[LOG-RHS] versus [THETA]	30.79	0.000
[LHS-LOG] versus [THETA]	4.58	0.032

Table 4. Reputation (LS) model estimates for different Box-Cox transformations

Specifica	tion	Box-Cox parameters	<i>P</i> -value	$\operatorname{Log} L$
θ, λ	[ТНЕТА]	$\lambda = 0.49$ $\theta = -0.05$	0.000 0.572	68.88
$\theta = \lambda$	[LAMBDA]	$\lambda = 0.06$	0.453	63.61
θ = 1, λ	[LIN-RHS]	$\lambda = 1.27$	0.000	-13.95
θ , $\lambda = 1$	[LHS-LIN]	θ = 0.00	0.994	63.69
$\theta = \lambda = 0$	[LOG-LOG]			63.33
$\theta = \lambda = 1$	[LIN-LIN]			-14.30
θ = 0, λ	[LOG-RHS]	$\lambda = 0.50$	0.000	68.72
θ , $\lambda = 0$	[LHS-LOG]	θ=-0.06	0.471	63.60

Note: we report p-values of the null hypothesis that each coefficient is equal to 0.

Table 5. Comparison among reputation (LS) specifications by LR test

Model [.] versus Model [.]	χ²-statistic	<i>P</i> -value
[LAMBDA] versus [THETA]	10.53	0.001
[LIN-RHS] versus [THETA]	165.66	0.000
[LHS-LIN] versus [THETA]	10.37	0.001
[LOG-LOG] versus [THETA]	11.09	0.001
[LIN-LIN] versus [THETA]	166.35	0.000
[LOG-RHS] versus [THETA]	0.32	0.571
[LHS-LOG] versus [THETA]	10.56	0.001

Table 6. Coefficient estimates of the general and restricted CVL and LS preferred models

Variable	General CVL [LAMBDA]	Restricted CVL [LAMBDA]	General LS [LOG-RHS]	Restricted LS [LOG-RHS]
AN97	0.104	0.115	0.063	0.073
	(0.000)	(0.000)	(0.002)	(0.000)
TYPE	0.075	0.067	0.068	0.068
THE	(0.010)	(0.020)	(0.001)	(0.001)
ALC	0.985		0.117	
TIEC	(0.667)		(0.312)	
DEN	0.286	0.301	0.154	0.166
DEIT	(0.000)	(0.000)	(0.000)	(0.000)
BARR	0.038		0.036	0.045
Billitt	(0.176)		(0.069)	(0.018)
BOTT	0.102	0.102	- 0.011	- 0.011
BOTT	(0.037)	(0.037)	(0.000)	(0.000)
INTE	0.016			
IIVIL	(0.514)			
FINE	0.037			
THVE	(0.365)			
COMP	- 0.042			
COMI	(0.239)			
HARM	0.120	0.140		
IIAIWI	(0.000)	(0.000)		
TANI	0.011			
IAM	(0.758)			
FINI	0.024			
TINI	(0.336)			
ECGAM			0.083	0.085
ECOAM			(0.005)	(0.005)
ECMAR			0.113	0.114
ECMAR			(0.000)	(0.000)
ECVER			0.093	0.100
ECVER			(0.000)	(0.000)
FIT			0.039	0.043
ГП			(0.000)	(0.000)
PREST			0.015	0.015
PRESI			(0.000)	(0.000)
EAMA			0.383	0.389
FAMA			(0.000)	(0.000)
UCDE			0.034	
VSPE			(0.147)	
Box-Cox parameter	- 0.515	- 0.521	0.503	0.497
Log L	- 153.69	- 157.15	68.72	66.96

Note: the dependent variable is the wine price (p). The number of observations is 603. P-values of the null hypothesis that each coefficient is equal to 0 are reported in brackets.

Table 7. Marginal effects on price

Variable	Restricted CVL [LAMBDA]	Restricted LS [LOG-RHS]
AN97	2.78	2.03
TYPE	1.55	1.86
DEN	6.23	4.36
BOTT	0.04	-0.07
HARM	5.53	
BARR		1.25
ECGAM		2.42
ECMAR		3.28
ECVER		2.83
FIT		0.57
PREST		0.07
FAMA		12.47

Note: In the CVL model effects have been computed at the mean value of the regressors except for *HARM* equalised to 2. For dummy variables (*HARM*) the effect represents the change in the dependent variable when the dummy (*HARM*) changes from 0 to 1 (from 2 to 3).

In the LS model effects have been computed at the mean value of all regressors. For dummy variables the effect represents the change in the dependent variable when the dummy changes from 0 to 1.

Table 8. Comparison among restricted CLV and LS models by Vuong (1989) test

LS [LOG-RHS] versus CLV [LAMBDA]	VALR-statistics ^a	<i>P</i> -value
Correction factor:		
- Hannan and Quinn	6.636	0.000
- Akaike	6.630	0.000
- Schwarz	6.432	0.000

^a These statistics are distributed as a N(0,1) under the null hypothesis that the two models are equally distant to the true model.

DATA APPENDIX

Variable definition and data sources

- alcoholic content as it appears on the label of the bottle. As imposed from the *Disciplinary Text* for Barolo and Barbaresco, the alcoholic degree reported on the label can differ from the actual value determined by chemical analysis by at most ±0,5% vol. Sources: AA.VV. *Duemila vini*, Associazione Italiana Sommeliers ed., years 2000, 2001, 2002 and direct or phone interviews with producers between July and September 2002.
- AN97: a dummy variable which equals 1 if the wine vintage is 1997 and 0 otherwise.
- *BARR*: a dummy variable which equals 1 if a percentage of the wine passed an aging period in *barrique* barrels and 0 otherwise. Source: direct or phone interviews with producers between July and September 2002.
- BOTT: number of bottles produced for each wine in thousands. Sources: AA.VV. *Duemila vini*, Associazione Italiana Sommeliers ed., years 2000, 2001, 2002 and the wine ratings database at www.winespectator.com. We checked the information provided by *Wine Spectator* through direct or phone interviews with producers between July and September 2002.
- COMP: a dummy variable which reflects the complexity of the aroma. It equals 2 if the olfactory characteristic is present, 1 otherwise. Sources: AA.VV. *Duemila vini*, Associazione Italiana Sommeliers ed., years 2000, 2001, 2002 and the wine ratings database at www.winespectator.com.
- DEN: a dummy variable which equals 1 if the wine appellation on the label is not just "Barolo" or "Barbaresco", but it contains more information (e.g. the vineyard or the indications of the *terroir* where the grapes are produced, or the word *Riserva*: these dictions have been intended as indicators of a special wine, i.e. a "cru" one) and 0 otherwise.
- ECGAM: a dummy variable which equals 1 (0 otherwise) if the wine obtained a "Tre Bicchieri" award from the Italian wine guidebook "Guida ai Vini d'Italia" during the 2000-02 period. Sources: AA.VV. Guida ai Vini d'Italia, Gambero Rosso ed., years 2000, 2001, 2002, and the web site www.gamberorosso.it.
- ECMAR: a dummy variable which equals 1 (0 otherwise) if the wine obtained a rating higher than 76/100 from the Italian wine guidebook "Guida dei Vini Italiani" during the 2000-02 period. This threshold is used by the author to identify "excellent wines". Source: Maroni, L. Guida dei Vini Italiani, LM ed., years 2000, 2001, 2002.
- ECVER: a dummy variable which equals 1 (0 otherwise) if the wine obtained a rating higher than 90/100 from the Italian wine guidebook "I vini di Veronelli" during the 2000-02 period. This threshold is used by the author to identify "excellent wines". Source: Veronelli, L. I vini di Veronelli, Veronelli ed., years 2000, 2001, 2002.
- FAMA: a dummy variable which equals 1 (0 otherwise) if the wine producer has been included at least once in one of the following charts:

- 1992-2002 "Top 100" wines of the year chart, yearly published by the *Wine Spectator* Magazine. The source is the wine ratings database at www.winespectator.com.
- "Outstanding Wine" rating in the chart of Piedmont wines made by Robert Parker. The sources are the web site www.erobertparker.com and Parker, R. Robert Parker's Wine Buyers' guide, 2002.
- the chart proposed by the Italian wine review *Civiltà del Bere* (April 2002), which indicates the wine producers that obtained a rating of excellence in 2002 from at least three of the five most important Italian wine guidebooks (Veronelli, L. *I vini di Veronelli*; Masnaghetti, A. *I Vini d'Italia* 2002; Maroni, L. *Guida dei Vini Italiani*; AIS ed., *Duemila vini*; Gambero Rosso ed., *Guida ai Vini d'Italia*);
- FINE: a dummy variable which equals 2 if the wine is characterized by finesse of aroma, 1 otherwise. The sources are the same as for COMP.
- FINI: a dummy variable which reflects the persistence of the taste in the finish. It equals 3 if the finish is long, 2 if it is medium, 1 if it is short. The sources are the same as for COMP.
- FIT: total number of "Tre Bicchieri" awarded during the 1987-2002 period to any wine of a producer by the Italian wine guidebook "Guida ai Vini d'Italia". The source is the same as for ECGAM.
- HARM: a dummy gustatory variable which contemplates the harmony between the components of the wine. It equals 3 if the wine is well balanced, 2 if it is balanced, 1 if it is unbalanced. The sources are the same as for COMP.
- *INTE*: a dummy variable which reflects the level of aromatic intensity of the wine. It equals 3 if the wine's aroma is strong, 2 if it is classic and 1 if it is discreet. The sources are the same as for *COMP*.
- p: price per bottle of wine in current Euros. Data have been collected by direct or phone interviews with the wine producers during the July September 2002 period. The producers were asked to provide the retail price at which they would sell the wine directly to the consumer in their estate wineshop.
- *PREST*: number of ratings assigned to any wine of a producer during the years by the *Wine Spectator* Magazine. Source: the wine ratings database at www.winespectator.com.
- *TANI*: a dummy variable which indicates the presence of fine tannins. It equals 2 if there are fine tannins, 1 otherwise. The sources are the same as for *COMP*.
- TYPE: a dummy variable which equals 1 if the wine is a Barolo and 0 if it is a Barbaresco.
- VSPE: a variable which indicates the valuation in a 100 points scale assigned to each bottle by the *Wine Spectator* Magazine if the rating is not missing (452 observations out of 603). The remaining 151 cases have been adjusted according to two criteria: i) the average *Wine Spectator* rating obtained from the same wine in other vintages; ii) the average rating obtained from the same vineyard's and producer's wines. Source: the wine ratings database at www.winespectator.com.

References

- AA.VV., (2002), Civiltà del bere, April.
- AA.VV., *Duemila vini*, Associazione Italiana Sommeliers (ed.), years 2000, 2001, 2002.
- AA.VV., *Guida ai vini d'Italia*, Gambero Rosso (ed.), years 2000, 2001, 2002 and web site www.gamberorosso.it.
- Akaike, H. (1973), "Information Theory and an Extension of the Likelihood Ratio Principle", in Petrov, B. N. and Coaki, F. (ed.), Proceedings of the Second International Symposium of Information Theory, Akademiai Kiado, Budapest, pp. 257-281.
- Akerlof, G. A. (1970) "The market for "lemons": Quality uncertainty and the market mechanism", *Quarterly Journal of Economics*, 84, pp. 488-500.
- Baker, T. A. (1997), "Quality-Adjusted Price Indexes for Portable Computers", *Applied Economics*, 29, pp. 1115-1123.
- Berndt, E. R. and Griliches, Z. (1990), *Price Indexes for Microcomputers: an Explanatory Study*, Working Paper No. 3378, NBER, Cambridge, MA.
- Box, G. E. P. and Cox, D. R. (1964), "An Analysis of Transformations", *Journal of the Royal Statistical Society*, Series B, pp. 211-243.
- Brookshire, D.S., D'Arge, R. C., Schulze, W. D. and Thayer, M. A. (1981), "Experiments in Valuing Public Goods", in Smith, K. V. (ed.), *Advances in Applied Microeconomics*, vol. 1, JAI Press, Greenwich, Connecticut.
- Can, A. (1992), "Specification and Estimation of Hedonic Housing Price Models", *Regional Science and Urban Economics*, 22(3), pp. 453-74.
- Chow, G. C. (1967), "Technological Change and the Demand for Computers", *American Economic Review*, 57, pp. 1117-1130.
- Combris, P., Lecocq, S., and Visser, M. (1997), "Estimation of a Hedonic Price Equation for Bordeaux Wine: Does Quality Matter?", *Economic Journal*, 107, pp. 390-402.
- Combris, P., Lecocq, S. and Visser, M. (2000), "Estimation of a Hedonic Price Equation for Burgundy Wine", *Applied Economics*, 32, pp. 961-967.

- Cropper, M., Deck, L. and McConnell, K. (1988), "On the Choice of Functional Form for Hedonic Price Functions", *Review of Economics and Statistics*, 70(4), November, pp. 668-675.
- Davidson, R. and MacKinnon, J. (1993), Estimation and Inference in Econometrics, Oxford University Press.
- Freeman, A. M. (1979), "Hedonic Prices, Property Values and Measuring Environmental Benefits: A Survey of the Issues", *Scandinavian Journal of Economics*, 81, pp. 154-73.
- Gasmi, F., Laffont, J.J. and Vuong, Q. H. (1992), "Econometric Analysis of Collusive Behavior in a Soft-Drink Market", *Journal of Economics and Management Strategy*, 1(2), pp. 277-311.
- Goodman, A. (1978), "Hedonic Prices, Price Indices and Housing Markets", Journal of Urban Economics, 5(4), pp. 471-484.
- Griliches, Z. (1971), *Price Indexes and Quality Change*, Harvard University Press, Cambridge, Massachusetts.
- Hannan, E. J. and Quinn, B. G. (1979), "The Determination of the Order of an Autoregression", *Journal of the Royal Statistical Society*, 41, pp. 190-195.
- Johansson, P. (1987), *The Economic Theory and Measurement of Environmental Benefits*, Cambridge University Press, Cambridge, Massachusetts.
- Landon, S. and Smith, C. E. (1997), "The Use of Quality and Reputation Indicators by Consumer: the Case of Bordeaux Wine", *Journal of Consumer Policy*, 20, pp. 289-323.
- Landon, S. and Smith, C. E. (1998), "Quality Expectation. Reputation and Price", *Southern Economic Journal*, 64, pp. 628-647.
- Maroni, L., *Guida dei Vini Italiani*, LM (ed.), Roma, years 2000, 2001, 2002.
- Masnaghetti, A. (2002), *I Vini d'Italia 2002*, Gruppo Editoriale L'Espresso, Roma.
- Murray, J. and Sarantis, N. (1999), "Price Quality Relations and Hedonic Price Indexes for Cars in the United Kingdom", *International Journal of the Economics of Business*, 6(1), pp. 5-27.

- Oczkowski, E. (1994), "A Hedonic Price Function for Australian Premium Table Wine", *Australian Journal of Agricultural Economics*, 38, pp. 93-110.
- Oczkowski, E. (2001), "Hedonic Price Wine Functions and measurement error", *The Economic Record*, 239(77), pp. 374-382.
- Parker, R. (2002), *Robert Parker's Wine Buyers' guide*, New York and web site www.erobertparker.com.
- Rosen, S. (1974), "Hedonic Price and Implicit Markets: Product Differentiation in Pure Competition", *Journal of Political Economy*, 82, pp. 34-55.
- Sacchetto, S. (2002), Prezzo e qualità nel settore vinicolo: il caso italiano del Barolo e del

- Barbaresco, University of Turin, mimeo.
- Schamel, G. (2000), *Individual and Collective Reputation Indicators of Wine Quality*, Policy Discussion Paper No. 0009, CIES, University of Adelaide, Australia.
- Schwarz, G. (1978), "Estimating the Dimension of a Model", *Annals of Statistics*, 6, pp. 461-464.
- Veronelli, L., *I vini di Veronelli*, Veronelli (ed.), Bergamo, years 2000, 2001, 2002.
- Vuong, Q. H. (1989), "Likelihood Ratio Tests for Model Selection and non-nested Hypotheses", *Econometrica*, 57(2), pp. 307-333.
- Wine Spectator, various issues and web site www.winespectator.com.

WORKING PAPER SERIES (2004-1993)

2004

- 1/04 Le origini dell'economia dell'innovazione: il contributo di Rae, by Mario Coccia
- 2/04 Liberalizzazione e integrazione verticale delle utility elettriche: evidenza empirica da un campione italiano di imprese pubbliche locali, by Massimiliano Piacenza and Elena Beccio
- 3/04 Uno studio sull'innovazione nell'industria chimica, by Anna Ceci, Mario De Marchi, Maurizio Rocchi
- 4/04 Labour market rigidity and firms' R&D strategies, by Mario De Marchi and Maurizio Rocchi
- 5/04 Analisi della tecnologia e approcci alla sua misurazione, by Mario Coccia
- 6/04 Analisi delle strutture pubbliche di ricerca scientifica: tassonomia e comportamento strategico, by Mario Coccia
- 7/04 Ricerca teorica vs. ricerca applicata. Un'analisi relativa al Cnr, by Mario Coccia and Secondo Rolfo
- 8/04 Considerazioni teoriche sulla diffusione delle innovazioni nei distretti industriali: il caso delle ICT, by Arianna Miglietta
- 9/04 Le politiche industriali regionali nel Regno Unito, by Elisa Salvador
- 10/04 Going public to grow? Evidence from a panel of Italian firms, by Robert E. Carpenter and L. Rondi
- 11/04 What Drives Market Prices in the Wine Industry? Estimation of a Hedonic Model for Italian Premium Wine, by Luigi Benfratello, Massimiliano Piacenza and Stefano Sacchetto
- 12/04 Brief notes on the policies for science-based firms, by Mario De Marchi, Maurizio Rocchi
- 13/04 Countrymetrics e valutazione della performance economica dei paesi: un approccio sistemico, by Mario Coccia
- 14/04 Analisi del rischio paese e sistemazione tassonomica, by Mario Coccia
- 15/04 Organizing the Offices for Technology Transfer, by Chiara Franzoni
- 16/04 Le relazioni tra ricerca pubblica e industria in Italia, by Secondo Rolfo
- 17/04 *Modelli di analisi e previsione del rischio di insolvenza: una prospettiva delle metodologie applicate*, by Nadia D'Annunzio e Greta Falavigna
- 18/04 SERIE SPECIALE: Lo stato di salute del sistema industriale piemontese: analisi economico-finanziaria delle imprese piemontesi, Terzo Rapporto 1999-2002, by Giuseppe Calabrese, Fabrizio Erbetta, Federico Bruno Rolle
- 19/04 SERIE SPECIALE: Osservatorio sulla dinamica economico-finanziaria delle imprese della filiera del tessile e dell'abbigliamento in Piemonte, Primo rapporto 1999-2002, by Giuseppe Calabrese, Fabrizio Erbetta, Federico Bruno Rolle
- 20/04 SERIE SPECIALE: Osservatorio sulla dinamica economico-finanziaria delle imprese della filiera dell'auto in Piemonte, Secondo Rapporto 1999-2002, by Giuseppe Calabrese, Fabrizio Erbetta, Federico Bruno Rolle

2003

- 1/03 Models for Measuring the Research Performance and Management of the Public Labs, by Mario Coccia, March
- 2/03 An Approach to the Measurement of Technological Change Based on the Intensity of Innovation, by Mario Coccia, April
- 3/03 Verso una patente europea dell'informazione: il progetto EnIL, by Carla Basili, June
- 4/03 Scala della magnitudo innovativa per misurare l'attrazione spaziale del trasferimento tecnologico, by Mario Coccia, June
- 5/03 Mappe cognitive per analizzare i processi di creazione e diffusione della conoscenza negli Istituti di ricerca, by Emanuele Cadario, July
- 6/03 Il servizio postale: caratteristiche di mercato e possibilità di liberalizzazione, by Daniela Boetti, July
- 7/03 Donne-scienza-tecnologia: analisi di un caso di studio, by Anita Calcatelli, Mario Coccia, Katia Ferraris and Ivana Tagliafico, July
- 8/03 SERIE SPECIALE. OSSERVATORIO SULLE PICCOLE IMPRESE INNOVATIVE TRIESTE. Imprese innovative in Friuli Venezia Giulia: un esperimento di analisi congiunta, by Lucia Rotaris, July
- 9/03 Regional Industrial Policies in Germany, by Helmut Karl, Antje Möller and Rüdiger Wink, July
- 10/03 SERIE SPECIALE. OSSERVATORIO SULLE PICCOLE IMPRESE INNOVATIVE TRIESTE. L'innovazione nelle new technology-based firms in Friuli-Venezia Giulia, by Paola Guerra, October
- 11/03 SERIE SPECIALE. Lo stato di salute del sistema industriale piemontese: analisi economico-finanziaria delle imprese piemontesi, Secondo Rapporto 1998-2001, December
- 12/03 SERIE SPECIALE. Osservatorio sulla dinamica economico-finanziaria delle imprese della meccanica specializzata in Piemonte, Primo Rapporto 1998-2001, December
- 13/03 SERIE SPECIALE. Osservatorio sulla dinamica economico-finanziaria delle imprese delle bevande in Piemonte, Primo Rapporto 1998-2001, December

2002

1/02 La valutazione dell'intensità del cambiamento tecnologico: la scala Mercalli per le innovazioni, by Mario Coccia, January

- 2/02 SERIE SPECIALE IN COLLABORAZIONE CON HERMES. Regulatory constraints and cost efficiency of the Italian public transit systems: an exploratory stochastic frontier model, by Massimiliano Piacenza, March
- 3/02 Aspetti gestionali e analisi dell'efficienza nel settore della distribuzione del gas, by Giovanni Fraquelli and Fabrizio Erbetta, March
- 4/02 Dinamica e comportamento spaziale del trasferimento tecnologico, by Mario Coccia, April
- 5/02 Dimensione organizzativa e performance della ricerca: l'analisi del Consiglio Nazionale delle Ricerche, by Mario Coccia and Secondo Rolfo, April
- 6/02 Analisi di un sistema innovativo regionale e implicazioni di policy nel processo di trasferimento tecnologico, by Monica Cariola and Mario Coccia, April
- 7/02 Analisi psico-economica di un'organizzazione scientifica e implicazioni di management: l'Istituto Elettrotecnico Nazionale "G. Ferraris", by Mario Coccia and Alessandra Monticone, April
- 8/02 Firm Diversification in the European Union. New Insights on Return to Core Business and Relatedness, by Laura Rondi and Davide Vannoni, May
- 9/02 Le nuove tecnologie di informazione e comunicazione nelle PMI: un'analisi sulla diffusione dei siti internet nel distretto di Biella, by Simona Salinari, June
- 10/02 La valutazione della soddisfazione di operatori di aziende sanitarie, by Gian Franco Corio, November
- 11/02 Analisi del processo innovativo nelle PMI italiane, by Giuseppe Calabrese, Mario Coccia and Secondo Rolfo, November
- 12/02 Metrics della Performance dei laboratori pubblici di ricerca e comportamento strategico, by Mario Coccia, September
- 13/02 Technometrics basata sull'impatto economico del cambiamento tecnologico, by Mario Coccia, November

- 1/01 *Competitività e divari di efficienza nell'industria italiana*, by Giovanni Fraquelli, Piercarlo Frigero and Fulvio Sugliano, January
- 2/01 Waste water purification in Italy: costs and structure of the technology, by Giovanni Fraquelli and Roberto Giandrone, January
- 3/01 SERIE SPECIALE IN COLLABORAZIONE CON HERMES. *Il trasporto pubblico locale in Italia: variabili esplicative dei divari di costo tra le imprese*, by Giovanni Fraquelli, Massimiliano Piacenza and Graziano Abrate, February
- 4/01 Relatedness, Coherence, and Coherence Dynamics: Empirical Evidence from Italian Manufacturing, by Stefano Valvano and Davide Vannoni, February
- 5/01 *Il nuovo panel Ceris su dati di impresa 1977-1997*, by Luigi Benfratello, Diego Margon, Laura Rondi, Alessandro Sembenelli, Davide Vannoni, Silvana Zelli, Maria Zittino, October
- 6/01 SMEs and innovation: the role of the industrial policy in Italy, by Giuseppe Calabrese and Secondo Rolfo, May
- 7/01 Le martingale: aspetti teorici ed applicativi, by Fabrizio Erbetta and Luca Agnello, September
- 8/01 Prime valutazioni qualitative sulle politiche per la R&S in alcune regioni italiane, by Elisa Salvador, October
- 9/01 Accords technology transfer-based: théorie et méthodologie d'analyse du processus, by Mario Coccia, October
- 10/01 Trasferimento tecnologico: indicatori spaziali, by Mario Coccia, November
- 11/01 Does the run-up of privatisation work as an effective incentive mechanism? Preliminary findings from a sample of Italian firms, by Fabrizio Erbetta, October
- 12/01 SERIE SPECIALE IN COLLABORAZIONE CON HERMES. Costs and Technology of Public Transit Systems in Italy: Some Insights to Face Inefficiency, by Giovanni Fraquelli, Massimiliano Piacenza and Graziano Abrate, October
- 13/01 Le NTBFs a Sophia Antipolis, analisi di un campione di imprese, by Alessandra Ressico, December

2000

- 1/00 Trasferimento tecnologico: analisi spaziale, by Mario Coccia, March
- 2/00 Poli produttivi e sviluppo locale: una indagine sulle tecnologie alimentari nel mezzogiorno, by Francesco G. Leone, March
- 3/00 La mission del top management di aziende sanitarie, by Gian Franco Corio, March
- 4/00 La percezione dei fattori di qualità in Istituti di ricerca: una prima elaborazione del caso Piemonte, by Gian Franco Corio, March
- 5/00 Una metodologia per misurare la performance endogena nelle strutture di R&S, by Mario Coccia, April
- 6/00 Soddisfazione, coinvolgimento lavorativo e performance della ricerca, by Mario Coccia, May
- 7/00 Foreign Direct Investment and Trade in the EU: Are They Complementary or Substitute in Business Cycles Fluctuations?, by Giovanna Segre, April
- 8/00 L'attesa della privatizzazione: una minaccia credibile per il manager?, by Giovanni Fraquelli, May

- 9/00 Gli effetti occupazionali dell'innovazione. Verifica su un campione di imprese manifatturiere italiane, by Marina Di Giacomo, May
- 10/00 Investment, Cash Flow and Managerial Discretion in State-owned Firms. Evidence Across Soft and Hard Budget Constraints, by Elisabetta Bertero and Laura Rondi, June
- 11/00 Effetti delle fusioni e acquisizioni: una rassegna critica dell'evidenza empirica, by Luigi Benfratello, June
- 12/00 Identità e immagine organizzativa negli Istituti CNR del Piemonte, by Paolo Enria, August
- 13/00 Multinational Firms in Italy: Trends in the Manufacturing Sector, by Giovanna Segre, September
- 14/00 Italian Corporate Governance, Investment, and Finance, by Robert E. Carpenter and Laura Rondi, October
- 15/00 Multinational Strategies and Outward-Processing Trade between Italy and the CEECs: The Case of Textile-Clothing, by Giovanni Balcet and Giampaolo Vitali, December
- 16/00 The Public Transit Systems in Italy: A Critical Analysis of the Regulatory Framework, by Massimiliano Piacenza, December

- 1/99 La valutazione delle politiche locali per l'innovazione: il caso dei Centri Servizi in Italia, by Monica Cariola and Secondo Rolfo, January
- 2/99 Trasferimento tecnologico ed autofinanziamento: il caso degli Istituti Cnr in Piemonte, by Mario Coccia, March
- 3/99 Empirical studies of vertical integration: the transaction cost orthodoxy, by Davide Vannoni, March
- 4/99 Developing innovation in small-medium suppliers: evidence from the Italian car industry, by Giuseppe Calabrese, April
- 5/99 Privatization in Italy: an analysis of factors productivity and technical efficiency, by Giovanni Fraquelli and Fabrizio Erbetta, March
- 6/99 New Technology Based-Firms in Italia: analisi di un campione di imprese triestine, by Anna Maria Gimigliano, April
- 7/99 Trasferimento tacito della conoscenza: gli Istituti CNR dell'Area di Ricerca di Torino, by Mario Coccia, May
- 8/99 Struttura ed evoluzione di un distretto industriale piemontese: la produzione di casalinghi nel Cusio, by Alessandra Ressico, June
- 9/99 Analisi sistemica della performance nelle strutture di ricerca, by Mario Coccia, September
- 10/99 The entry mode choice of EU leading companies (1987-1997), by Giampaolo Vitali, November
- 11/99 Esperimenti di trasferimento tecnologico alle piccole e medie imprese nella Regione Piemonte, by Mario Coccia, November
- 12/99 A mathematical model for performance evaluation in the R&D laboratories: theory and application in Italy, by Mario Coccia, November
- 13/99 Trasferimento tecnologico: analisi dei fruitori, by Mario Coccia, December
- 14/99 Beyond profitability: effects of acquisitions on technical efficiency and productivity in the Italian pasta industry, by Luigi Benfratello, December
- 15/99 Determinanti ed effetti delle fusioni e acquisizioni: un'analisi sulla base delle notifiche alle autorità antitrust, by Luigi Benfratello, December

1998

- 1/98 Alcune riflessioni preliminari sul mercato degli strumenti multimediali, by Paolo Vaglio, January
- 2/98 Before and after privatization: a comparison between competitive firms, by Giovanni Fraquelli and Paola Fabbri, January
- 3/98 Not available
- 4/98 Le importazioni come incentivo alla concorrenza: l'evidenza empirica internazionale e il caso del mercato unico europeo, by Anna Bottasso, May
- 5/98 SEM and the changing structure of EU Manufacturing, 1987-1993, by Stephen Davies, Laura Rondi and Alessandro Sembenelli, November
- 6/98 The diversified firm: non formal theories versus formal models, by Davide Vannoni, December
- 7/98 Managerial discretion and investment decisions of state-owned firms: evidence from a panel of Italian companies, by Elisabetta Bertero and Laura Rondi, December
- 8/98 La valutazione della R&S in Italia: rassegna delle esperienze del C.N.R. e proposta di un approccio alternativo, by Domiziano Boschi, December
- 9/98 Multidimensional Performance in Telecommunications, Regulation and Competition: Analysing the European Major Players, by Giovanni Fraquelli and Davide Vannoni, December

1997

1/97 Multinationality, diversification and firm size. An empirical analysis of Europe's leading firms, by Stephen Davies, Laura Rondi and Alessandro Sembenelli, January

- 2/97 Qualità totale e organizzazione del lavoro nelle aziende sanitarie, by Gian Franco Corio, January
- 3/97 Reorganising the product and process development in Fiat Auto, by Giuseppe Calabrese, February
- 4/97 Buyer-supplier best practices in product development: evidence from car industry, by Giuseppe Calabrese, April
- 5/97 L'innovazione nei distretti industriali. Una rassegna ragionata della letteratura, by Elena Ragazzi, April
- 6/97 The impact of financing constraints on markups: theory and evidence from Italian firm level data, by Anna Bottasso, Marzio Galeotti and Alessandro Sembenelli, April
- 7/97 Capacità competitiva e evoluzione strutturale dei settori di specializzazione: il caso delle macchine per confezionamento e imballaggio, by Secondo Rolfo, Paolo Vaglio, April
- 8/97 *Tecnologia e produttività delle aziende elettriche municipalizzate*, by Giovanni Fraquelli and Piercarlo Frigero, April
- 9/97 La normativa nazionale e regionale per l'innovazione e la qualità nelle piccole e medie imprese: leggi, risorse, risultati e nuovi strumenti, by Giuseppe Calabrese, June
- 10/97 European integration and leading firms' entry and exit strategies, by Steve Davies, Laura Rondi and Alessandro Sembenelli, April
- 11/97 Does debt discipline state-owned firms? Evidence from a panel of Italian firms, by Elisabetta Bertero and Laura Rondi, July
- 12/97 Distretti industriali e innovazione: i limiti dei sistemi tecnologici locali, by Secondo Rolfo and Giampaolo Vitali, July
- 13/97 Costs, technology and ownership form of natural gas distribution in Italy, by Giovanni Fraquelli and Roberto Giandrone, July
- 14/97 Costs and structure of technology in the Italian water industry, by Paola Fabbri and Giovanni Fraquelli, July
- 15/97 Aspetti e misure della customer satisfaction/dissatisfaction, by Maria Teresa Morana, July
- 16/97 La qualità nei servizi pubblici: limiti della normativa UNI EN 29000 nel settore sanitario, by Efisio Ibba, July
- 17/97 Investimenti, fattori finanziari e ciclo economico, by Laura Rondi and Alessandro Sembenelli, rivisto sett. 1998
- 18/97 Strategie di crescita esterna delle imprese leader in Europa: risultati preliminari dell'utilizzo del data-base Ceris "100 top EU firms' acquisition/divestment database 1987-1993", by Giampaolo Vitali and Marco Orecchia, December
- 19/97 Struttura e attività dei Centri Servizi all'innovazione: vantaggi e limiti dell'esperienza italiana, by Monica Cariola, December
- 20/97 Il comportamento ciclico dei margini di profitto in presenza di mercati del capitale meno che perfetti: un'analisi empirica su dati di impresa in Italia, by Anna Bottasso, December

- 1/96 Aspetti e misure della produttività. Un'analisi statistica su tre aziende elettriche europee, by Donatella Cangialosi, February
- 2/96 L'analisi e la valutazione della soddisfazione degli utenti interni: un'applicazione nell'ambito dei servizi sanitari, by Maria Teresa Morana, February
- 3/96 La funzione di costo nel servizio idrico. Un contributo al dibattito sul metodo normalizzato per la determinazione della tariffa del servizio idrico integrato, by Giovanni Fraquelli and Paola Fabbri, February
- 4/96 Coerenza d'impresa e diversificazione settoriale: un'applicazione alle società leaders nell'industria manifatturiera europea, by Marco Orecchia, February
- 5/96 Privatizzazioni: meccanismi di collocamento e assetti proprietari. Il caso STET, by Paola Fabbri, February
- 6/96 I nuovi scenari competitivi nell'industria delle telecomunicazioni: le principali esperienze internazionali, by Paola Fabbri, February
- 7/96 Accordi, joint-venture e investimenti diretti dell'industria italiana nella CSI: Un'analisi qualitativa, by Chiara Monti and Giampaolo Vitali, February
- 8/96 *Verso la riconversione di settori utilizzatori di amianto. Risultati di un'indagine sul campo*, by Marisa Gerbi Sethi, Salvatore Marino and Maria Zittino, February
- 9/96 Innovazione tecnologica e competitività internazionale: quale futuro per i distretti e le economie locali, by Secondo Rolfo, March
- 10/96 Dati disaggregati e analisi della struttura industriale: la matrice europea delle quote di mercato, by Laura Rondi, March
- 11/96 Le decisioni di entrata e di uscita: evidenze empiriche sui maggiori gruppi italiani, by Alessandro Sembenelli and Davide Vannoni, April
- 12/96 Le direttrici della diversificazione nella grande industria italiana, by Davide Vannoni, April
- 13/96 R&S cooperativa e non-cooperativa in un duopolio misto con spillovers, by Marco Orecchia, May
- 14/96 *Unità di studio sulle strategie di crescita esterna delle imprese italiane*, by Giampaolo Vitali and Maria Zittino, July. **Not available**
- 15/96 Uno strumento di politica per l'innovazione: la prospezione tecnologica, by Secondo Rolfo, September

- 16/96 L'introduzione della Qualità Totale in aziende ospedaliere: aspettative ed opinioni del middle management, by Gian Franco Corio, September
- 17/96 Shareholders' voting power and block transaction premia: an empirical analysis of Italian listed companies, by Giovanna Nicodano and Alessandro Sembenelli, November
- 18/96 La valutazione dell'impatto delle politiche tecnologiche: un'analisi classificatoria e una rassegna di alcune esperienze europee, by Domiziano Boschi, November
- 19/96 L'industria orafa italiana: lo sviluppo del settore punta sulle esportazioni, by Anna Maria Gaibisso and Elena Ragazzi, November
- 20/96 La centralità dell'innovazione nell'intervento pubblico nazionale e regionale in Germania, by Secondo Rolfo, December
- 21/96 Ricerca, innovazione e mercato: la nuova politica del Regno Unito, by Secondo Rolfo, December
- 22/96 Politiche per l'innovazione in Francia, by Elena Ragazzi, December
- 23/96 La relazione tra struttura finanziaria e decisioni reali delle imprese: una rassegna critica dell'evidenza empirica, by Anna Bottasso, December

- 1/95 Form of ownership and financial constraints: panel data evidence on leverage and investment choices by Italian firms, by Fabio Schiantarelli and Alessandro Sembenelli, March
- 2/95 Regulation of the electric supply industry in Italy, by Giovanni Fraquelli and Elena Ragazzi, March
- 3/95 Restructuring product development and production networks: Fiat Auto, by Giuseppe Calabrese, September
- 4/95 Explaining corporate structure: the MD matrix, product differentiation and size of market, by Stephen Davies, Laura Rondi and Alessandro Sembenelli, November
- 5/95 Regulation and total productivity performance in electricity: a comparison between Italy, Germany and France, by Giovanni Fraquelli and Davide Vannoni, December
- 6/95 Strategie di crescita esterna nel sistema bancario italiano: un'analisi empirica 1987-1994, by Stefano Olivero and Giampaolo Vitali, December
- 7/95 Panel Ceris su dati di impresa: aspetti metodologici e istruzioni per l'uso, by Diego Margon, Alessandro Sembenelli and Davide Vannoni, December

1994

- 1/94 Una politica industriale per gli investimenti esteri in Italia: alcune riflessioni, by Giampaolo Vitali, May
- 2/94 Scelte cooperative in attività di ricerca e sviluppo, by Marco Orecchia, May
- 3/94 Perché le matrici intersettoriali per misurare l'integrazione verticale?, by Davide Vannoni, July
- 4/94 Fiat Auto: A simultaneous engineering experience, by Giuseppe Calabrese, August

1993

- 1/93 Spanish machine tool industry, by Giuseppe Calabrese, November
- 2/93 The machine tool industry in Japan, by Giampaolo Vitali, November
- 3/93 The UK machine tool industry, by Alessandro Sembenelli and Paul Simpson, November
- 4/93 The Italian machine tool industry, by Secondo Rolfo, November
- 5/93 Firms' financial and real responses to business cycle shocks and monetary tightening: evidence for large and small Italian companies, by Laura Rondi, Brian Sack, Fabio Schiantarelli and Alessandro Sembenelli, December

Free copies are distributed on request to Universities, Research Institutes, researchers, students, etc.

Please, write to:

MARIA ZITTINO
Working Papers Coordinator
CERIS-CNR

Via Real Collegio, 30; 10024 Moncalieri (Torino), Italy

Tel. +39 011 6824.914; Fax +39 011 6824.966; m.zittino@ceris.cnr.it; http://www.ceris.cnr.it

Copyright © 2004 by CNR-Ceris

All rights reserved. Parts of this paper may be reproduced with the permission of the author(s) and quoting the authors and CNR-Ceris