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ABSTRACT: This paper presents an original econometric model for estimating a Dose Response 

Function though a regression approach when treatment is continuous, individuals may react 

heterogeneously to observable confounders and selection-into-treatment may be (potentially) 

endogenous. After the description of the model, two estimation procedures are set out: one 

based on OLS under conditional mean independence, and one based on IV under selection 

endogeneity. The paper goes on by presenting ctreatreg, a author’s user-written Stata 

routine for an easy implementation of such a model. The paper proceeds by performing a Monte 

Carlo experiment to test the reliability of the model and of its associated Stata routine. Results 

show that the model and the Stata routine ctreatreg are both reliable as estimates 

consistently fit the expected results.  
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1. INTRODUCTION 
 

In many socio-economic contexts, policy interventions take the form of “continuous” 

exposure to a certain type of “treatment”. In public policies to support business R&D, 

for instance, companies are not only selected for treatment, but also awarded a different 

“amount” of support. Likewise, individuals getting a grant to set-up a new business, or 

to escape some poverty threshold are other examples in which the amount of support 

can vary by individual, thereby providing ground for a different response to policy.  

In short, from a program evaluation perspective, what is relevant in many settings is 

not only the binary treatment status, but also the level of exposure (or “dose”) taken. 

This is in tune with the language used in epidemiology, where Dose Response 

Functions are usually estimated in order to checking patients’ resilience to different 

levels of drug administration. 

This paper presents an original econometric model for estimating a Dose Response 

Function through a regression approach when treatment is continuous, individuals may 

react heterogeneously to observable confounders and selection-into-treatment may be 

(potentially) endogenous. 

To fix ideas, consider a policy program where the treatment is assigned not randomly 

(i.e., according to some “structural” rule), and where – after setting who is treated and 

who is not – the program provides a different “level” of treatment (dose) ranging from 0 

(absence of treatment) to 100 (maximum treatment level). Two groups of units are thus 

formed: (i) untreated, whose level of treatment (or “dose”) is zero, and (ii) treated, 

whose level of treatment is greater than zero.  

We are interested in estimating the causal effect of the treatment variable t on an 

outcome y within the sample observed, by assuming that treated and untreated units 

may respond differently both to specific observable confounders (x), and to the “level” 

of the treatment. We wish to estimate a Dose-Response-Function of y on t.   

 The paper presents also a STATA routine, “ctreatreg”, for the practical 

estimation of the Dose-Response-Function (DRF) for such a model. In this context, the 

DRF is shown to be equal to the “Average Treatment Effect, given the level of 

treatment t” (i.e. ATE(t)), along with other “causal” parameters of interest, such as the 

average treatment effect (ATE), the average treatment effect on treated (ATET), the 

average treatment effect on non-treated (ATENT), the average treatment effect 

conditional on the vector (x; t), i.e. ATE(x; t), etc.. 

Compared with similar models - and in particular the one proposed by Hirano and 

Imbens (2004) implemented in STATA by Bia and Mattei (2008)
1
 - this model does not 

need a full normality assumption, and it is well-suited when many individuals have a 

zero-level of treatment. Furthermore, it may account for treatment “endogeneity”, by 

exploiting an Instrumental-Variables (IV) estimation. The Dose-Response-Function is 

approximated by a third degree polynomial. Both OLS and IV estimation are 

                                                 
1
 See also Bia, Flores and Mattei (2011) generalizing the Hirano-Imbens (2004) model by allowing for a 

nonparametric estimation of the Dose-Response Function. 
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considered. In particular, IV is based on a Heckman bivariate selection model for w (the 

yes/no decision to treat a given unit) and t (the level of the treatment provided) in the 

first step, and a 2SLS estimation for the outcome (y) equation in the second step.  

The reliability of the model and of ctreatreg is checked by a Monte Carlo 

experiment proving that the model and the routine both work correctly. The routine 

provides also an interesting graphical representation of results.  

The paper is organized as follows: section 2 and subsections present the model and the 

related estimation techniques; section 3 presents the STATA command ctreatreg, 

its use, and the Monte Carlo experiment; section 4 concludes the paper. 

 

 

2. THE MODEL 
 

Consider two different and exclusive outcomes, one when a unit is treated, y1, and one 

when the same unit is untreated, y0. Define w as the treatment indicator, taking value 1 

for treated and 0 for untreated units, and the functions g1(x) and g0(x) as the unit 

response to the vector of confounding variables x when the unit is treated and untreated 

respectively. Assume μ1 and μ0 to be two scalars and e1 and e0 two random variables 

assumed to have zero mean and constant variance. Finally define with h(t) the response 

function to the level of treatment t.  Given this, the model takes on this form
2
:  

 

1 1 1 1

0 0 0 0

1    ( ) ( )

0    ( )





     


    

w y g h t e

w y g e

x

x
 

 

where: 

 

( ) 0      0

( ) 0      1

h t if w

h t if w

 


   
 

Assume a parametric form for 0( )g  0x xδ  and 1 1( )g x xδ and define the Average 

Treatment Effect (ATE) conditional on x as: 

 

1 0 1 0

1 0

1 0 1 0

( ) ( ) ( )     if   0
ATE( ; ) E( | , )  

( ) ( )                if   0

( )    if   0
  

              if   0

 

 





   
   

  

 
 

 

h t t >
t y y t

t =

h t t >

t

x δ δ
x x

x δ δ

xδ

xδ

 

 

 

 

 

                                                 
2
 Such a model is the representation of a treatment random coefficient regression as showed by 

Wooldridge (1997; 2003). See also Wooldridge (2010, Ch. 18).   
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thereby getting: 

 

ATE( , 0)      1
ATE( , , ) I( 0)[ ( )] I( 0)[ ]

ATE( , 1)       0

[ ( )] (1 )[ ]

 

 

 
        

 

     

t if w
t w t h t t

t if w

w h t w

x
x xδ xδ

x

xδ xδ
 

 

By averaging on ( , , )t wx , the previous formula becomes: 

 

( , , ) ( , , )

0 0

ATE=E {ATE( , , )} E { [ ( )] (1 )[ ]}

E {E {E { [ ( )] (1 )[ ] | , } | }}

E {E { ( 1)[ ( )] ( 0)[ ] | , }}}

( 1)E {E [ ( )] | } ( 0)E {E ( ) | }

 

 

 

  

      

      

       

      

t w t w

t w

t

t t

t w w h t w

w h t w t

p w h t p w t

p w h t p w

x x

x

x

x x

x xδ xδ

xδ xδ x x

xδ xδ x

xδ x xδ x

, 0 0 , 0

0 0 0

0 0 0

( 1)E [ ] ( 0)E [ ]

( 1)( ) ( 0)( )

/ ( ) / ( )

 

 

 

  

  

  



       

       

      

t t t

t t t

T t t NT t

p w h p w

p w h p w

N N h N N

x xxδ xδ

x δ x δ

x δ x δ

 

 

Since by definition ATE = p(w=1) ∙ ATET + p(w=0) ∙ ATENT, we can get from the 

last row of the previous formula that: 

 

0 0 0

0 0

0

ATE ( 1)( ) ( 0)( )

ATET

ATENT

 





  

 



       


  
  


t t t

t t

t

p w h p w

h

x δ x δ

x δ

x δ

 

 

 

(1) 

 

and by simple algebra (by adding and subtracting the same expressions), we obtain: 

 

0 0 0 0 0 0

0 0 0 0 0 0 0 0

ATE( , , ) [ ( ) ( ) ( )] (1 )[ ( )]

[( ) ( ) ( ( ) )] (1 )[( ) ( ) ]

t t t t t t

t t t t t t t t

t w w h t h h w

w h h t h w

 

 

     

       

            

           

x xδ x δ x δ xδ x δ x δ

x δ x x δ x δ x x δ

 

that is: 

 

0 0 0 0 0ATE( , , ) [ATET ( ) ( ( ) )] (1 ) [ATENT ( ) ]t t t t tt w w h t h w              x x x δ x x δ

 

so that: 

 

0 0 0

0 0

ATET( , ) ATE( , , 1) ATET ( ) ( ( ) )

ATE( , ) ATE( , , 0) ATENT ( )

  

 

       


    

t t t

t t

t t w h t h

t t w

x x x x δ

x x x x δ

 

 

(2) 
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where: 

 

0 0

0

ATET

ATENT





 



   


 

t t

t

hx δ

x δ
 

 

(3) 

 

Finally, we can define the Dose-Response-Function (DRF) simply by averaging 

ATE(x, t) on x: 

 

0ATE( , ) E {ATE( , , )} [ATET ( ( ) )] (1 ) ATENTtt w t w w h t h w       x x
 

 

that is: 

 

0ATET ( ( ) )    if    0
ATE( )

ATENT                       if    0


   

 


th t h t
t

t

 

 

(4)
 

 

The estimation of (4) is main purpose of this paper. 

 

 

 

2.1 The regression approach 
 

In this section we consider the conditions for a consistent estimation of previous 

causal parameters.  We start from the Potential Outcome Model (POM): 

 

0 0 0 0

1 1 1 1

( )

( ) ( )

y g e

y g h t e





  


   

x

x
 

 

The observable outcome is 0 1 0( )  y y w y y
 
that we can write, by substitution, as: 

 

0 1 0 0 0 0 1 1 1 0 0 0( ) ( ( ) ) [( ( ) ( ) ) ( ( ) )]y y w y y g e w g h t e g e              x x x
 

 

By collecting the various arguments, we get that: 

 

 0 1 0 0 1 0 0 1 0( ) ( ) [ ( ) ( )] ( ) ( )y w g w g g w h t e w e e               x x x
 

 

By assuming 1 1( )g x xδ  and 0 0( )g x xδ , and by adding and subtracting wxδ  and 

wh , we have that: 

 

0 1 0 1 0 1 0( ) [ ] ( ) ( ) ( ) ( )y w w w h t e w e e w w wh wh                   0 0xδ xδ xδ xδ xδ
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that is: 

 

0 1 0 0 1 0[( ) ] ( ) ( ( ) ) ( )                  y w h w w h t h e w e e0xδ xδ x x δ  (5) 

 

 

By assuming Conditional Mean Independence (CMI), namely that – given x both w 

and t are endogenous in equation (5), we can write the regression line of y as: 

 

0 1 0

ATE

E( | , , ) [( ) ] [ ] [ ( ) ]           y w t w h w w h t h0x xδ xδ x x δ   

(6) 

 

since CMI implies that 0 1 0 0 1 0E[ ( ) | , , ] E[ ( ) | ] 0       e w e e w t e w e ex x , being x 

exogenous by definition.  In equation (6) we have to show that ATE= 1 0( ) .    hxδ  

The following proof shows this. 

 
Proof. 

We know that: 0 0( 1) ( 0)      t tp w p wx x x  where x  refers to the average on the entire sample.      

Now call p(w=1)=p1 and  p(w=0)=p0.  We saw above that: 

1 0 0 0 0 1 1 0 1 0 0 0 0

1 0 1 0 1 0 1 0

ATE ( ) ( )

( ) ( )

   

 

     

  

          

      

t t t t t t

t t t

p h p p p p h p p

p p p p p h h

x δ x δ x δ x δ

x x δ xδ
 

since p1+p0=1. □ 

 

The previous proof leads to the estimation of this regression equation: 

 

0E( | , , ) ATE [ ] [ ( ) ]      y w t w w w h t h0x xδ x x δ  (7) 

 

where the term [ ( )h t h ] can be estimated by linear regression, partial linear or 

polynomial regression.  

 

 

 

2.2 Estimation of the Dose-Response-Function under CMI 
 

By supposing a three degree polynomial form for the function h(t) of this form: 

 
2 3( )h t at bt ct    

 

We get that equation (7) becomes: 

 
2 3 2 3

0E( | , , ) ATE [ ] [( ) ( E( ) E( ) E( )]          y w t w w w at bt ct a t b t c t0x xδ x x δ
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that is: 

2 2 3 3

0E( | , , ) ATE [ ] [ E( )] [ E( )] [ E( )]          y w t w w a t t w b t t w c t t w0x xδ x x δ  (8) 

Under CMI, an OLS estimation of equation [8] leads to the following consistent 

estimates of the parameters 0
ˆˆ ˆˆˆ ˆ ˆ, , , , , , . ATE a b c0δ δ  With these parameters at hand, we can 

finally estimate consistently the Dose-Response-Function, taking on this form: 

 

2 2 3 3

1 1 1

1 1 1ˆˆ ˆATE( ) [ATET ( ) ( ) ( )] (1 )ATENT
  

  

          
N N N

i i i i i i i

i i i

t w a t t b t t c t t w
N N N

 (9) 

 

with: 

 

0ATET( ) ATE( )
ii i tt t

 


 

 

A simple graph of the curve 
0ATE( )



ii tt as function of t, returns the form of the DRF.  

It is interesting to calculate, for each level of the dose t the 95% confidence interval 

around the DRF. By defining T1=t-E(t), T2=t
2
-E(t

2
) and T3= t

3
-E(t

3
), the standard error 

of the DFR is equal to
3
: 

 

 
1/ 2

2 2 2

1 2 3 1 2 , 1 3 , 2 3 ,
ATE( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2 2            a b c a b a c b c
t

T T T TT TT T T
 

 

so that the 95% confidence interval of ˆATE( )t for each t is given by: 

 

 
ATE( )

ˆ ˆ ATE( ) 1.96   
t

t  

 

that can be usefully graphed along the DRF curve.  

 
 

2.3 Estimation of the Dose-Response-Function under treatment endogeneity 
 

When w (and thus t) are endogenous (i.e., CMI hypothesis does not hold anymore), 

then the estimation of regression (8) by OLS is known to be biased. Nevertheless, an 

Instrumental-Variables (IV) estimation procedure may be implemented to restore 

consistency. 

 

 

                                                 
3
 This comes from the variance/covariance properties where T1 T2 T3 are taken as constant and a, b and c 

as random variables. 
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To this aim, we need to express the model in this extensive form: 

 
2 2 3 3

0

*

*

*

* *

ATE [ ] [ E( )] [ E( )] [ E( )]

1     if    0

0    if    0   

     if    0

    if    0   

            

 
 



 
 



y w w a t t w b t t w c t t w

w
w

w

t w
t

t w

0xδ x x δ

 

 

where w
*
 represent the latent unobservable counterpart of the binary variable w. For 

instance, w
*
 might be seen as the cost-benefit calculus of an agency choosing to finance 

specific subjects. As for t, it is fully observed only when w=1 (and t= t ) otherwise it is 

supposed to be unobserved (although put equal to zero). By defining T1=t-E(t), T2=t
2
-

E(t
2
) and T3= t

3
-E(t

3
), the previous model may be re-written as follows: 

 

0 1 1 3

*

1 1

2 2

ATE [ ]

                                                                      

                                                                       

 





        

 

  

y

w

t

y w w awT bwT wT

w

t

0xδ x x δ

x β

x β






 

(10.1) 
 

(10.2) 
 

(10.3) 

 

where εw, εt and εy are error terms supposed to be freely correlated with zero mean. 

Equation (10.2) – the selection equation – defines the regression explaining the cost-

benefit indicator w
*
. The vector of covariates x1 are the selection criteria used, for 

instance, by an agency to set the treated and untreated group. In turn equation (10.3) – 

the treatment-level equation – defines how the level of unit treatment is decided, and it 

regards only units that were considered eligible for treatment. The vector of covariates 

x2 are those exogenous variables thought of as determining exactly the treatment level. 

In equation (10.1), both w and T1, T2 and T3 are endogenous. To estimate consistently 

the parameters of that system of equations we may proceed in two steps:  
 

1. First: we estimate the last two equations (10.2)-(10.3) jointly by a “bivariate 

sample-selection model” that can be consistently estimated by a Heckman two-step 

procedure (Heckman, 1979). As said, this can be seen as a model in which first the 

decision to treat a given unit has been taken, and then the level of the treatment 

decided. The Heckman two-step procedure performs a probit of w on x1 in the first 

step and a OLS regression of t  on x2 augmented with the Mills’ ratio obtained 

from the probit in the second step.  
 

2. Second: we take the all sample predicted values of w (i.e. ˆ
wp ) and t (i.e. t̂ ) 

from the previous Heckman estimation, and then we perform a 2SLS for equation 

(10.1) using as instruments the following exogenous variables  

( 1 2 3
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, , [ ], , ,w w w w wp p p T p T p Tx x x ), thus getting a consistent estimation of the 
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coefficients ( 0, ,ATE, , , , a b c0δ δ ). Observe that the instruments used are based on 

the orthogonal projection of w and t on the vector space generated by the all 

exogenous variables of the model.   

 

The problem of this procedure is with parameters’ identification. To get precise 

estimation, we need at least one instrumental variable (z) appearing only in equation (2), 

that is, only able to explain directly the selection process. Thus, we run under the 

following identification assumption: 
 

x1 = [x; z] 

x2 = [x] 
 

so that a full specified model (all the equations depend on the same exogenous x) is 

considered, where z is the instrumental variable directly correlated with the selection, 

but directly uncorrelated with the level of the dose as well as the level of the outcome. 

This procedure indentifies correctly the parameters of interest. 

 

 

 

2.4. Estimation of comparative dose-response-functions 
 

Besides the Dose-Response-Function and the other causal parameters of interest as 

defined above, the previous model allows also for calculating the average comparative 

response at different level of treatment (as in Hirano and Imbens, 2004). This quantity 

takes this formula:  

 

ATE( , ) E[ ( ) ( )]   t y t y t  (11) 

 

Equation (11) identifies the average treatment effect between two states (or levels of 

treatment): t and t  . Given a certain level of    , we can get a particular 

ATE( , )t   that can be called as the “treatment function at  ”. Observe that the 

standard ATE(t) is obtained from (11) when t=0. 

 

How can we get an estimation of ( , )ATE t   in our setting? We can observe that in our 

framework the “potential outcome” at different t, i.e. E[y(t)], is: 

 

, 1 , 1 0

0

E( | ) E {E( | , , )} E { ATE [ ] [ ( ) ]}

ATE ( ( ) )

w wy t y w t w w w h t h

h t h





         

   

x x 0

0

x xδ x x δ

xδ
 

 

Therefore: 

 

0 0E( | ) E( | ) [ ATE ( ( ) )] [ ATE ( ( ) )] ( ) ( )y t y t h t h h t h h t h t                0 0xδ xδ
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that is: 

 

ATE( , ) E[ ( ) ( )]t y t y t    = ( ) ( )h t h t  =[
2 3( ) ( ) ( )a t b t c t     ]-

2 3[ ]at bt ct   

 

and an estimation is thus given by: 

 
2 3 2 3ˆ ˆˆ ˆ ˆ ˆ ˆATE( , ) ( ) ( ) ( ) [ ]         t a t b t c t at bt ct  

 

Given a predefined    , for each level of t we can use a bootstrap of ˆ ( , )ATE t  over 
ˆˆ ˆ( , , )a b c  to get the standard errors of ˆATE( , )t and then its statistical significance at 

various level of t.  

 

 

3. THE STATA ROUTINE CTREATREG 
 

A software implementation for estimating the model presented in section 2 has been 

realized by the user-written STATA routine ctreatreg. This routine run both under 

CMI and under treatment endogeneity
4
. The Help-file of the routine shows the syntax 

along with the options as set out in Table 1.  

 

Table 1. STATA help file for ctreatreg. 

 

help ctreatreg 
---------------------------------------------------------------------------------------------------------------------- 
 
Title 
 
    ctreatreg -  Dose-Response model with "continuous" treatment, endogeneity and heterogeneous response to 
                   observable confounders 
 
 
Syntax 
 
        ctreatreg outcome treatment [varlist] [if] [in] [weight], model(modeltype) ct(treat_level) 
                 [hetero(varlist_h) iv(instrument) delta(number) graphic conf(number) vce(robust) const(noconstant) 
                 head(noheader) beta] 
 
    fweights, iweights, and pweights are allowed; see weight. 

 
Description 
 
    ctreatreg estimates the Dose-Response-Function (DRF) of a given treatment on a specific target variable, within 
    a model where units are treated with different levels. The DRF is defined as the “average treatment effect, 
    given the level of the treatment t” (i.e. ATE(t)).  The routine also estimates other “causal” parameters of 
    interest, such as the average treatment effect (ATE), the average treatment effect on treated (ATET), the 
    average treatment effect on non-treated (ATENT), and the same effects conditional on t and on the vector of 
    covariates x.The DRF is approximated by a third degree polynomial function.  Both OLS and IV estimation are 
    available, according to the case in which the treatment is not or is endogenous. In particular, the implemented 
    IV estimation is based on a Heckman bivariate selection model for w (the yes/no decision to treat a given unit) 
    and t (the level of the treatment provided) in the first step, and a 2SLS estimation for the outcome (y) 
    equation in the second step.  The routine allows also for a graphical representation of results. 
 
      
Options 
     
    model(modeltype) specifies the treatment model to be estimated, where modeltype must be one of the following two 
        models: "ct-ols", "ct-iv".  it is always required to specify one model. 
 
    ct(treat_level) specifies the treatment level (or dose).  This variable takes values in the [0;100] interval, 
        where 0 is the treatment level of non-treated units. The maximun dose is thus 100. 
 
    hetero(varlist_h) specifies the variables over which to calculate the idiosyncratic Average Treatment Effect 
        ATE(x), ATET(x) and ATENT(x), where x=varlist_h. It is optional for all models. When this option is not 
        specified, the command estimates the specified model without heterogeneous average effect. Observe that 
        varlist_h should be the same set or a subset of the variables specified in varlist.  Observe however that 
        only numerical variables may be considered. 

                                                 
4
 For a STATA implementation when the treatment is binary see Cerulli (2012). 
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    iv(instrument) specifies the variable to be used as instrument in the Heckman bivariate selection model. This 
        option is required only for "ct-iv". 
 
    delta(number) identifies the average treatment effect between two states: t and t+delta. For any reliable delta, 
        we can obtain the response function ATE(t;delta)=E[y(t)-y(t+delta)]. 
 
    graphate allows for a graphical representation of the density distributions of ATE(x;t) ATET(x;t) and  
        ATENT(x;t). It is optional for all models and gives an outcome only if 
        variables into hetero() are specified. 
 
    graphdrf allows for a graphical representation of the Dose Response Function (DRF) and of 
        its derivative. It plots also the 95% confidence interval of the DRF over the dose 
        levels.  
    vce(robust) allows for robust regression standard errors. It is optional for all models. 
 
    beta reports standardized beta coefficients. It is optional for all models. 
 
    const(noconstant) suppresses regression constant term. It is optional for all models. 
 
    conf(number) sets the confidence level equal to the specified number.  The default is number=95. 
 
 
  modeltype_options           description 
  -------------------------------------------------------------------------------------------------------------------- 
  Model 
  ct-ols                      Control-function regression estimated by ordinary least squares 
  ct-iv                       IV regression estimated by Heckman bivariate selection model and 2SLS 
  -------------------------------------------------------------------------------------------------------------------- 
 
 
    ctreatreg creates a number of variables: 
 
        _ws_varname_h are the additional regressors used in model's regression when hetero(varlist_h) is specified. 
 
        _ps_varname_h are the additional instruments used in model's regression when hetero(varlist_h) is specified 
        in model "ct-iv". 
 
        ATE(x;t) is an estimate of the idiosyncratic Average Treatment Effect. 
 
        ATET(x;t) is an estimate of the idiosyncratic Average Treatment Effect on treated. 
 
        ATENT(x;t) is an estimate of the idiosyncratic Average Treatment Effect on Non-Treated. 
 
        ATE(t) is an estimate of the Dose-Response-Function. 
 
        ATET(t) is the value of the Dose-Response-Function in t>0. 
 
        ATENT(t) it is the value of the Dose-Response-Function in t=0. 
 
        probw is the predicted probability from the Heckman selection model (estimated only for model "ct-iv"). 
 
        mills is the predicted Mills' ratio from the Heckman selection model (estimated only for model "ct-iv"). 
 
        t is a copy of the treatment level variable, but only in the sample considered. 
        t_hat is the prediction of the level of treatment from the Heckman bivariate selection model (estimated only 
        for model "ct-iv"). 
 
        der_ATE_t is the estimate of the derivative of the Dose-Response-Function. 
 
        std_ATE_t is the standardized value of the Dose-Response-Function. 
 
        std_der_ATE_t is the standardized value of the derivative of the Dose-Response-Function. 
 
        Tw, T2w, T3w are the three polynomial factors of the Dose-Response-Function. 
 
        T_hatp, T2_hatp, T3_hatp are the three instruments for the polynomial factors of the Dose-Response-Function 
        when model "ct-iv" is used. 
 
 
    ctreatreg returns the following scalars: 
 
        r(N_tot) is the total number of (used) observations. 
 
        r(N_treated) is the number of (used) treated units. 
 
        r(N_untreated) is the number of (used) untreated units. 
 
        r(ate) is the value of the Average Treatment Effect. 
 
        r(atet) is the value of the Average Treatment Effect on Treated. 
 
        r(atent) is the value of the Average Treatment Effect on Non-treated. 
 
Remarks  
 
    The variable specified in treatment has to be a 0/1 binary variable (1 = treated, 0 = 
    untreated). 
 
    The standard errors for ATET and ATENT may be obtained via bootstrapping. 
 
    When using the option ct-iv in modeltype(), be sure that the number of variables included in 
    hetero() is less than the number of variables included in varlist.  This is because 
    otherwise instruments are too much correlated and some emerging collinearity prevent to 
    identify the estimates. For instance, when six covariates are specified in varlist, at most 
    five are to be put into hetero(). 
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Following the Help-file this routine is rather straightforward to use and provides 

suitable graphical representation of results. In particular it provides a graph for the DRF 

and a combined graph for the densities of ATE(x,t), ATET(x,t) and ATENT(x,t).  

 

 

 

3.1 A Monte Carlo experiment for testing ctreatreg’s reliability  
 

In this section we provide a Monte Carlo experiment to check whether ctreatreg 

complies with predictions from the theory and to assess its correctness from a 

computational point of view. The first step is that of defining a Data Generating Process 

(DGP) as follows: 

 

 

1 2

0 1 2

1 1 2

1 2

1[50 60 30 60 0]
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   
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   
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where we have assumed, for simplifying the model, that e1=e0=e and: 

 

1

2

2
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(0;1) 100

ln( )
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with: 
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Finally, we suppose that the correlation between a and e0 can be either equal or 

different from zero. In the latter case, w is endogenous.  
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Therefore, we assume the following DGP
5
: 

 

2 2

(0;1)

/(1 )

corr( ; )

0.0001

 

  




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 





e a v

v N

e a

 

 

When ρ=0 the model CT-OLS would be the appropriate one; otherwise, the model 

CT-IV should be employed. With z we indicate the instrument, directly correlated with 

w, but (directly) uncorrelated with y1 and y0. Given these assumptions, the DGP is 

completed by the potential outcome equation:  

 

yi = y0i + wi (y1i  - y0i) 

 

generating the observable outcome y. 

 

The DGP is simulated 200 times using a sample size of 10,000. For each simulation 

we get a different data matrix (x1, x2, y, w, z) on which we apply the two models (CT-

OLS and CT-IV) implemented by ctreatreg.   

 

 Case 1. Exogeneity 

We start by assuming ρ=0, that is, zero correlation between the error term of the 

outcome equation (e) and the error term of the selection equation (a). Under this 

assumption, w is exogenous. Moreover, we assume a strong correlation between the 

selection and the dose equation, as implied by a correlation between a and u  

equal to 0.8. 

Results are set out in Table 2. It is immediate to see that the value of ATE obtained by 

the CT-OLS estimator is really close to the true ATE (9.22) and that the confidence 

interval at 5% of significance for this estimator strictly contains that value. But also the 

percentage bias of CT-IV is very low (0.86%) and comparable with CT-OLS (0.81%) 

and sufficient to imply that the 5% of significance contains the true ATE even in this 

case.  

 

 

 

                                                 
5
 The coefficient γ is equal to (ρ

2
/(1- ρ

2
))

-1/2
 , where ρ=corr(e0;a). To get this result put x=e and y=a. We 

know that corr(x;y)=cov(x;y)/sd(x)sd(y). We can see that, while var(y)=1 by assumption, var(x)=γ
2
+1. 

Moreover, cov(x;y)=cov(η+γa+v;a)=cov(η+γa;a)+cov(v;a)=cov(η+γa;a)=cov(γa;a)=γcov(a;a)=γvar(a)=γ. 

Thus, ρ=γ/(γ
2
+1)

-1/2
, that implies that γ=(ρ

2
/(1- ρ

2
))

-1/2
.    
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Table 2. Mean test of ATE from Monte Carlo results using ctreatreg. 

 Exogenous selection is assumed. 

 

 

Mean Std. Err. [95% Confidence Interval] 

ATE  (true value) 9.22 - - - 

ATE - CT-OLS 9.21 0.01 9.19 9.22 

ATE - CT-IV 9.20 0.01 9.19 9.22 

%  BIAS of OLS 0.81 0.04 0.73 0.90 

%  BIAS of IV 0.86 0.04 0.77 0.94 

Note: ρ=0. Number of observations 10,000. Number of simulations 200. 

 

These results confirm what was expected, thus showing that the option CT-OLS of 

ctreatreg behaves correctly. As a conclusion, when the analyst assumes exogeneity, 

he/she may reliably use ctreatreg with the option CT-OLS.    

 

 Case 2. Endogeneity 

If we assume that ρ=0.7, that is, a high positive correlation between the error term of 

the outcome equation (e) and the error term of the selection equation (a), then w 

becomes endogenous. For the sake of comparison, we still assume the same strong 

correlation between the selection and the dose equation (0.8). 

Table 3 shows that results are - also in this case - very consistent with the theoretical 

predictions. Indeed, the percentage bias of model CT-OLS is rather high and equal to 

around 18%, whereas the bias of CT-IV is around 1%. Furthermore, and more 

importantly, the 95% mean test confidence interval for CT-IV contains the true ATE. 

As expected, this implies that CT-IV is an unbiased estimator in presence of selection 

endogeneity, thus leading to a reliable estimation of the true value of ATE. 

 

Table 3. Mean test of ATE from Monte Carlo results using ctreatreg. 

 Endogenous selection is assumed. 

 

 

Mean Std. Err. [95% Confidence Interval] 

ATE  (true value) 9.22 - - - 

ATE - CT-OLS 7.53 0.01 7.51 7.55 

ATE - CT-IV 9.22 0.01 9.20 9.24 

%  BIAS of OLS 18.26 0.11 18.05 18.48 

%  BIAS of IV 1.28 0.07 1.15 1.41 

Note: ρ=0.7. Number of observations 10,000. Number of simulations 200. 
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Overall, these results confirm the reliability of the model and that of  ctreatreg by 

allowing for a trustful use of this model and this command either under selection 

exogeneity or endogeneity. 

Finally, figure 1 plots the Dose-Response-Function along with the 95% interval 

confidence lines for both models. This is done by exploiting the option “graphdrf” of  

ctreatreg. 

 

 

4. CONCLUSION 

 

In this paper, an original econometric model for estimating a Dose Response Function 

through a regression approach when treatment is continuous, individuals may react 

heterogeneously to observable confounders and selection-into-treatment may be 

endogenous has been presented. Two estimation procedures are thus set out: one based 

on OLS under conditional mean independence, and one based on IV under selection 

endogeneity.  

 

Figure 1. Graph of the Dose-Response-Function (DRF) using the ctreatreg option 

“ct-ols” and “ct-iv” under exogeneity and endogeneity respectively. 

 

The paper presents also ctreatreg, a user-written Stata routine for an easy 

implementation of such a model. As application, a Monte Carlo experiment to test the 

reliability of the model and of its associated Stata routine has been performed. Monte 

Carlo results show that the model and the Stata routine ctreatreg are both reliable as 

estimates consistently fit the expected results.  

 

  

 

MODEL CT-OLS (under exogeneity) 

 

MODEL CT-IV (under endogeneity) 
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