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PREFACE 
T H E S E seems to be no book in existence, at least in English, 

that presents in a coherent form the mathematical treatment 
of the theory of political economy which has been developed 
during the past eighty years or more. The more familiar 
parts of the theory are assumed by writers or indicated in 
footnotes or appendices, the less familiar must be sought 
in the treatises or journals in which they appear; the various 
writers ou the mathematical theory have proceeded from 
different hypotheses and adopted different notations, and 
students are consequently hindered in the use of this very 
valuable aid to analysis. Though the simpler applications 
of mathematics made by competent writers and lecturers 
can be appreciated by any intelligent readers and students, 
the more complicated analyses are only within the power of 
those who have mathematical aptitude, and it is for them 
that this book is arranged. The actual number of mathe-
matical theorems used is quite small, but among them are 
some uses of the calculus which do not form part of the 
usual elementary curriculum, and these are brought together 
in an appendix. 

I have attempted to reduce to a uniform notation, and to 
present as a properly related whole, the main part of the 
mathematical methods used by Cournot, Jevons, Pareto, 
Edgeworth, Marshall, Pigou, and Johnson, so far as these 
are applied to the fundamental equations of exchange and 
to the elementary study of taxation. Since I cannot be sure 
that I have not in some cases misinterpreted these writers, 
I have not given many detailed references, and must content 
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myself witli this general acknowledgement of indebtedness. 
I have not intended to advance any new theorems in econo-
mics, nor do I claim any originality in mathematical results, 
for the few theorems which I have not consciously adapted 
from others may in fact already have been published. 
Perhaps, however, there is in my analysis a more definite 
attempt than has been usual to deal equally with the hypo-
theses of competition and of monopoly, to find a place for 
incomplete monopoly and to indicate how perfect competition 
and perfect monopoly are mathematically the extreme cases 
of a more general conception. 

M y thanks are due to Professor A. C. Pigou and Dr. H. 
Dalton for advice on the general contents of the study, and 
to Mr. L. E. Connor who has devoted much time to cor-
rection and verification of the detail. 

A. L. B„ 

March, 1924. 
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INTRODUCTION 
ECONOMICS deals with the production, exchange, possession, 

consumption, and use of material goods and immaterial services. 
The whole subject of wealth and welfare has two aspects, one 
subjective, moral or psychological, the other objective or material. 
From the one we may consider the attainment by economic 
action of an abstract good, or hedonistically the pleasure or 
satisfaction derived from the possession or use of things, or the 
desire to obtain goods; none of which terms are arithmetically 
measurable. From the other we may have in view material 
goods and actual services which can be measured by quantity or 
by money value. At first sight it might appear that mathe-
matical reasoning was confined to the objective aspect, but this 
is not the case. If we cannot measure, it is true that we cannot 
apply the arithmetical processes of addition and multiplication 
and their converse ; but we may be able to detect equality and 
inequality, relationship, continuity, variation, and other properties 
which lead to algebraic expressions. 

It is proposed in the following treatment to have in mind 
two entities ; the one incommensurable, the satisfaction derived 
from economic goods or in some cases the desire to obtain them, 
the other measurable, e.g. the physical quantity of goods. The 
second may be compared with a measurable shadow cast by an 
undefined object. The more exact relationship is as follows: 
write U(x,y...) for an algebraic function of measurable quantities 
x,y...\ let it be so related to an entity we will call S(x,y...), 
where S is not a calculable function but the non-measurable 
satisfaction derived from quantities x,y..., that the following 
postulates are satisfied. 

Pustulates. (1) When x,y... vary without affecting the value 
of U{ x,y...), more x balancing less y, &c., S(x,y...) remains 
unchanged. 

27«! B 
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(2) When x,y... vary so as to increase U(x,y...), S(x,y...) 
increases, and if U decreases, S decreases. 

(3) When there are successive variations of x, y..., the first 
increasing TJ from lJ\ to U2, the second from U2 to U3, so that 
the second increase is greater than the first (U3 — U2> U2— Z7j), 
then the second increase in S is greater than the first; the 
postulate still to be true, when less is written for greater. 

The first and second of these postulates are fundamental. 
U is measured on a definite scale, like the height of a ther-
mometer. To any point on this scale corresponds a level of 
satisfaction, to be compared with the personal sensation of heat. 
When U increases, when the thermometer rises, S the satis-
faction is increased, the sensation of heat is intensified. But 
a movement of 5 points (5 degrees) on the scale does not give 
a corresponding measurement of increased satisfaction, the 
intensification of sensation is not measurable. The thermometer 
is calibrated; the imaginary vessel of sensation is not. 

The first two postulates, together with the assumption that 
people in their economic actions aim at increasing their satis-
faction, are sufficient to obtain all the equations of equilibrium 
and in general all propositions that depend on the direction as 
distinct from the curvature of lines or the concavity of surfaces. 
Propositions depending on the sign or magnitude of the second 
derived function of U, which can be identified in the sequel by 
a careful reader,* require the third postulate. In terms of our 
analogy we should have that if in two successive periods the 
thermometer rose 5 and 8 degrees, the intensification of sensa-
tion in the second period would be greater than in the first. 

The first two postulates are sufficient to connect a maximum 
of S with a maximum of U. 

For convenience of working it is assumed that x,y... can move 
by infinitesimal steps, so that a value corresponds to every scale 
reading, and that U(x,y...) is a continuous function, i.e. that to 
a small change in xty... corresponds a small change in U. The 
great part of the analysis, however, would hold with close 
approximation if the quantities moved by finite steps, if these 
were small. The difficulty, if it be one, could be met in part 

* The third postulate is only required for pp. 13, 15, 55. 
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by the use of the calculus of Finite Differences, instead of the 
Differential Calculus, but the results would be akin, and the 
slight improvement would not compensate the increased com-
plexity. We may leave this difficulty with the remark that in 
the rare cases where the things or services exchanged are not 
susceptible of continuous variation (in quantity or quality), the 
results from the equations require some adjustment. 

Since some name must be given, U will be called the utility 
function. The utility to which it relates is that generally called 
utility or value in exchange. 





VI 

SIMPLE EXCHANGE OF TWO COMMODITIES 

§ 1. Marginal utility, indifference curves, offer curves. 
Consider first the problem of two persons A and B interchang-

ing two commodities X and Y. This analysis is used in the 
elementary discussion of barter, and by many writers in the 
fundamental treatment of foreign trade. The restriction to two 
commodities is equivalent merely to supposing that the posses-
sion of other goods does not affect the exchange between the two 
m question. The restriction to two persons is more important, 
since it rules out questions of competition. 

0 
o, i i 

As axes 
2 z 

M X o 

H bj B's axes z 
3 N 2 1 

F I G U R E 1 . 

A and B start with a1 and b1 of X and «2 and b2 of Y. 
A receives x of X from B in return for y of Y. 
After exchange A has 

iCi = a1 + x and ^ = a 2 - y , 
and B has 2fx = b^ — x and 2f2 = b„+y. 

îfi = ai + x a n d = 
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In the figure ^ and jf2 are measured horizontally to the right 
and vertically downwards from Ox. OxM — a2. 

MOX is drawn horizontally to the right, and MO = a1. 
0 represents A's initial position with reference to his axes 

Oii^i and O n S 2 . 
OY is drawn vertically upwards from 0, and YO produced to 

N, so that ON = l2. 
Through N a line is drawn horizontally to the right to 02 so 

that N02 — ¿j. 
02N produced and 0 2 2 S 2 vertically upwards form -S's axes, 

viz. 02„z,t and 02 2S2 , and 0 represents B s initial position as 
well as A's. 

The axes OX, OY are those on which x and y, the quantities 
exchanged, are measured. 

Let and 2 U f 2 ) he functions expressing the 
utility to A and B respectively of the possession or consumption 
of , £2 units of the commodities X and Y. 

Then jUfa, Q = 1U(a1 + x, a2-y) = 1V (x, y), 
and 2U(^, Q = 2U(bt-x, h2+y) = 2V(a>, y), 

where the function V is defined by these equations, so that 
iV(x,y) measures the utility enjoyed by A after the exchange of 
y for x, and 2V(x, y) measures the utility enjoyed by B after the 
exchange of x for y. For each value of y there will be an x which 
will just compensate A for the loss of y. The locus of such 
points is xV(x,y) = 0, and this equation gives A's indifference 
curve through the origin, viz. OR. 

For another locus of points, viz. t V(x , y) = 1, A will gain one 
unit of utility, and so we have a family of curves x V (x, y) — z* 
in which the successive curves -Jr(x, y) — 0, 1, 2... are A's 
indifference curves. A movement from one point to another on 
the same curve does not change the amount of utility. 

To any such curve, V (x, y) = c, a tangent at a point on it 
K . K) is { x _ x i ) . i V x i + ( y - f t ) . J y i = 0,t 
where XVX, ^VY are the partial derived functions of V{xty), and 

* Thi3 can be regarded as a surface, and in the subsequent argument the 
plane curves may be considered as contour lines of this surface. 

t Appendix, p. 92. 
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a r e results of writing x — xx, y = yx, in these 
derivatives. 

This tangent passes through 0 if 

• J ' ^ - V i • i7y i = 

and therefore x . jV^ + y . 2 V^ = 0 
is the equation to the tangent from 0 to V(x, y) — c, if (xxyx) is 
on this curve. 

For any named ratio of exchange p — y/x, the locus of exchange 
is y — Px• This line cuts many of As indifference curves and 
touches one, namely that for which p — — •J /a i/-J'yi, which it 
touches at (x1, jq). 

It is evident from the figure that the curve touched is higher 
up the scale of utility than the curves cut. Consequently if A 
is free to choose the amounts to be exchanged at the named 
ratio, he will exchange yj for xx. 

As p varies, all the points of contact of the tangents satisfy 
the equation x . • •J'y— 0-

This is the locus of points (OQXQ) at which A is willing to 
deal, if he cannot control the price. It is called A's offer curve. 

[ In the figure 
-x2-2y2+20x-4y = 25z = 25 . XV (xy). 

The tangent whose point of contact to a curve is (xx, yx) is 
(x — Xj) (— 2¿j -t 20) + (y —yx) (— 4yx — 4) = 0. 

This passes through the origin if 

xx (2xx — 20) +yx (4y1 + 4) = 0.* 

The locus of points of contact of tangents through the origin 
istherefore x (2x-20)+y (4y + 4) = 0, 

i. e. x2 + 2y2~10x + 2y = 0. 

This is the equation of A's offer.] 

* The equation to the tangent is then x (ar, - 1 0 ) + 2y (t/, + 1) = 0. 
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Similarly B's indifference curves are those concave to OY, OT 
is that through the origin, and B's offer curve is OQ2Q, the 
equation of which is 

2Vx+y-2Vy = o. 

§ 2. Equilibrium of exchange. 
Assume in the first instance that the bargain is made as 

a whole, not the result of a series of exchanges. 
B will try to take that point on A's offer curve which is most 

advantageous to him, which will be where A's offer touches one 
of B's indifference curves (Qi)- Similarly A will aim at a point 
Q2, where It's offer touches one of A's indifference curves. 

Let the offer curves intersect at Q. The double curve Q Q2 

is called the bargaining locus. If B is the stronger bargainer he 
may secure a point between Q and ; but if A and B are of equal 
bargaining strength, they will only both be willing to deal at 
the exchange rate and amount given by Q. In fact this is the 
position attained if the " formulae are regarded as representing 
the transactions of two individuals in, or subject to the law of, 
a market ",* in which case there can only be one price, and 
where neither party is at an advantage with respect to the other. 
If this position is disturbed, it is to the interest of one or the 
other to revert to it. 

In equilibrium we have, therefore, from the two offer curves 
and the identities given, 

p = l= J'x = ~2Vx = A_A . x -lTy Jy iUl, 2Ut,' 
These relations are obtained thus : j" 

s*i£i = 2x(ai+<») = 
,vx= Dx J(®,y) = JDxlU(a1 + x, a2-y) = Ux 

= Ax J (xfi, xf8) • I>x ¿1 = Ui&^Q = 
Similar! v 2Vy — 2Z7f>. 
But I)y X i1 = B v { a , 1 - y ) = - 1 , 

and Jy = Dh .U^.Q . I)y ^ = -xU(l. 
Similarly • J ' x = - 2 U U -

* Mathematical Psychics, Edgeworth, p. 39. f See Appendix, pp. 84-5. 
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These are the fundamental equations of equilibrium of ex-
change, and are due to Jevons. 

At the position of equilibrium A's and B's indifference curves 
touch, and the common tangent passes through 0. 

J VX — DX V(x, y), y constant, is the marginal utility to A of an 
increment of X, when x and y are already possessed.* 

Similarly -¡JJ ,̂ 1Z7fa are the marginal utilities to A of incre-
ments of A'and Y when A possesses j f j , and 2I/fj, a r e 

interpreted similarly for B. 

§ 3. The contract curve. 
If the exchange of y for x is not made as a single transaction 

from the position 0 (when A has ax and a2, and B has and i2) 
but from some other place, in other words if 0 varies: or, what 
comes to the same thing, if A and B do not know each other's 
position and make successive trial bargains f : then temporary 
equilibrium may be reached wherever a pair of indifference curves 
touch one another so long- as each gains, or at least does not 
lose, utility. 

At any such point 

i U i V y = (-gradient of XF) = (-gradient of 2V) = 2Vx/2Vy. 
The locus of such points, called the contract curve, is therefore 

The intersection of the offer curves evidently lies on the 
contract curve. RQT is the contract curve in the figure. The 
segment RT between A's and B's zero indifference curves is that 
within which the bargaining can terminate. 

§ 4. The demand, and supply curves. 
If y is eliminated from the equation 

we obtain an equation between p and x, say 

P = / (« ) • 

* More correctly . 5x is an increment in utility due to an increase from 
x to z+ 5x. 

f Principles ofEconomics, Marshall. App. F., p. 791. Edition 1907. 
2761 C 
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If T is taken as being money, then p is the price of a unit of 
X, and the equation is that of A's demand curve. 

Next eliminate y from the equation 
p=y/x = -2Vx/2Vy; 

the resulting equation, say p — <f) (x), is B's supply curve. 

[In the figure A's demand curve is obtained by writing 
y — px in the offer equation. The result is 

2p2x + 2p + x— 10 = 0, 

which may be written 
p = { - 1 ± \/(l + 20x — 2x2)}/2x =/(«). 

B's indifference lines are drawn from the equation 
— x2— 3y2 — 4x + 36y = 20z = 20 . 2V(x,y). 

B's offer is x ( - 2x-4) +y ( - §y + 36) = 0, 
i.e. x3 + 3y2 + 2x—18y = 0. 
B's supply equation is 

3p2x — 18p + x + 2 = 0; 

or p - { 9 + 7(81 -6x-3x2)}/3x = <p (x). 
The contract curve is 

( - 2 ® + 2 0 ) ( - 6 y + 3f>) — (-2x-4) (-4y-4) = 0, 
i.e. xy— 20x-34y+ 176 = 0. 

The offer, contract, supply, and demand equations are satisfied 
by x1 = 4-29, yx = 3-03, p = 0-707.] 

Both A and B gain by the exchange, A's gain being 1V(x1 yj, 
B's 2F (xly1). 

[In the example Jr(x1y1) = 1-5 ; 21l''(xly1) = 2-3.] 

§ 5. Elasticity of Demand. 
The demand curve being p = / ( « ) , the quantity 

V = -p/{xDxp) 
is called the elasticity of demand. Dxp is generally negative (see 
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p. 55 below), the quantity demanded decreasing when the price 
increases, and JJ is then positive. 

7j = 1, according as p = —xDxp. 

„ A - W = 0. 

„ Dx(y) I o. 
DEMAND CURVE. 

F I G U R E 2 . 

In figure 2 Dxp — — NQ/NL, where x — ON and p = NQ, 
and the tangent at Q meets OX at L. 

r, = NL/0N. 
Figure 3 shows the values of y = ¿w, where x — ON y — NR, 

and represents the offer curve. 

r] may also be written — -f , where i® and 8/j are 
¿2/ J) 

small finite changes (vanishing in the limit), and in this form is 
seen to be the ratio of a small relative increase in x to the corre-
sponding small relative decrease in p. 

When 77=1, ON' — N'L', and by a well-known geometric 
property I/'Q', and therefore the demand curve, touches at. Q' a 
rectangular hyperbola in which px is constant. It is also 
evident, since here Dx (px) = 0, that px is a maximum and is 
momentarily constant. At the same time Dxy = 0 and at the 
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corresponding point of the offer curve (R') the tangent is hori-
zontal. 

As r\ diminishes and approaches 0, I)xp becomes very great 
negatively, and a great increase of price diminishes x very little ; 
ultimately when JJ = 0 the demand is said to be perfectly inelastic, 
and the demand curve is vertical. 

On the other hand as TJ increases above unity, Lxp becomes 
small, and a small change in p makes a great change in x. Perfect 
elasticity is reached when rj is infinite and the demand curve 
horizontal. 

O F F E R C U R V E . 

Y 

60-

Qucrntity 
F I G U R E 3 . 

§ 6. Money prices. 
Let 7 be money which A is paying and B receiving. Then 

~ i^y = = Ki> say. ^ the marginal utility of money to A, 
and = 2Vy = k2 its marginal utility to B. 

We get certain simplifications if we suppose the marginal 
utilities of money to be unaffected by the sale and purchase of x, 
or, in other words, that A and B have so much money that this 
particular deal does not sensibly affect its marginal utility. 

In this case A's indifference curves are parallel to one another; 
for the gradient at the point (x, y) of the curve j V (xy) = const, 
is given by Dxy = — t Vx/X Vy = jT /̂ZCj, and this depends on x 
alone since Vx cannot under the hypothesis be affected by y; so 
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that for any assigned value of x the tangents to A's indifference 
curves are parallel, and similarly for B's indifference curves. 

The equation of the contract curve becomes 
k2 • + Ki • iK — ° > 

which only involves x and represents therefore a line (or con-
ceivably lines) parallel to OY. 

The offer curves are 

® • l^JfpKi = 0 a n d x-2Vx+yh2 = 
A's demand curve is 

P = - *i Vx=f(x), 1 
and J3's supply curve is 

P = - 7 • 2VX = 4> (*)> 
2 

without any elimination. 
= —gCfj and is negative.] 

In A's demand curve Kx.Dxp = XTXX, where j l ^ is written 
for the second partial derivative of x V with respect to ¡r.* 

•. v = ~P<1
 =

 l V x 

X • 1 "PXX ~ X • 1 ̂ XX 

and '' < 1 according as rVx = — x . 1VXX. 

At this point we use our third postulate for the first time. It 
is evident that XVX = jZT" is positive so long as U increases with 
satisfaction, and greater satisfaction is obtained by increased 
possession of x. There may of course be a position of satiety 
when XVX = 0 and p — 0, and even of negative satisfaction when 
jT^ is negative and A would pay to have less of x. Similarly 
Kj, k2, and 2 U i are positive and ^ are negative. 

Now assume, as in fact is generally the case, that successive 
equal increments of x add less and less satisfaction, and, in 
agreement with this, 

lV(x+ 2Sx, y) — 1V(x+bx,y)<1F(x + bx, y) — xV{x, y) 
for all values of x and y in the problem. 

* See Appendix, p. 90. 
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Then for a constant y successive steps of x V are of diminishing 
height, DXF (i.e. diminishes as x increases and Vxx is negative. 

In the figure (p. 5) the converse of this is seen, viz. that equal 
increments of j V need successively increasing increments of as, for 
the segments made by A'b indifference curves on any horizontal 
line increase to the right. 

Since KJ is positive and 1VCX is negative, Dxp is negative if 
the marginal utility of money is constant, and the demand curve 
falls continually to the right, and rj is therefore positive. 

If A and B are bargaining in similar conditions, it follows that 
2Ut1lt = 2~Kjy negative, and the segments of lines parallel to 
OY cut by B's indifference curves increase successively vertically. 
But if B is a producer employing labour and using materials, his 
position is no longer similar, and the argument no longer 
applies ; this condition is dealt with in detail later on (pp. 28 seq.). 

§ 7. The utility surface. 
Now consider Y no longer to be money but a commodity, as 

is X. We have then all the following expressions negative : 

If in the figure (p. 5) we regard z — 0, z — 1, ... as contour 
lines, they indicate the surface or hill 2 = xY(x,y). Ascent of 
this hill in any fixed direction between east and south starting 
from A's zero indifference curve becomes less and less steep till 
the summit in that direction is reached. Similarly B'a surface 
becomes less steep as one travels from his zero indifference curve 
in a direction between north and west. 

These conditions hold generally, but further complications are 
found when we take into account possible relations between the 
uses of X and of Y. These are considered, together with some 
more general aspects of the utility functions, in the following 
section, which may be postponed till the more elementary and 
fundamental analyses in the subsequent chapters have been read. 

ADDENDUM. THE UTILITY SURFACE. 

Independent, complementary, and alternative utility. 
The shape and properties of the utility surface relating to the 

interchange of two commodities depend in part on the question 
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whether the uses of the two commodities are independent or 
correlated. Here the discussion is of a theoretical nature ; the 
more practical aspects, when both commodities are being pur-
chased by a third person, are considered in chapter VI. 

Only A's surface is considered and the prefix 1 is dropped. 
A's offer is x . Vx +y . Jy = 0, A giving y in return for x. 
In this curve 

Dxy = -Dx(x. Vx +y. 1 'a)+Dy (x. Vx +y. Vy) * 
y const. x const. 

= vx+x.vxx+v. 
vyy' 

and if p = y/x, then y—px — 0, 
and .*. Dxy—p—xDxp= 0. 

Eliminate .Dxy, and simplify. We obtain 
= -y^.(Vvr+2 r,y.rr.Ty-rn.<vxy 

rS&^y+Vy+s-riti 
Here use the third postulate of p. 2 ; then Vxx and Vyy are 

negative. Vx is positive so long as A is not satiated with X, and 
Ty is negative if A has any use for Y. 

Bxp is the gradient of A's demand curve. 
Vxy is zero if X and Y have completely independent uses, so 

that a change iny does not affect the marginal utility of x, i.e. Vx. 
In this case D^ja is always negative. 

~Vxy is negative where X and Y have joint or complementary 
utility, where an increased parting with Y (i. e. an increase of y 
and a diminution of £2) diminishes the marginal utility of X 
(e.g. paper and ink). In this case also, I)xp is always negative. 

Vxy is positive where X and Y are alternative to each other 
(e.g. bread and meat) and an increase of y (a diminution of f 2 ) 
increases the marginal utility of x. In this case the sign of 
I)xp is not determinate. It can be shown that, if 

-vy(Vx.rxy-vy.vxx)>vx(-vx. Vyy + Vy. Vxy)>0, 
I)xp is positive. This will happen if the marginal utility of X 
changes slowly as x changes, but rapidly as y changes, while Vy 

changes very rapidly as y changes. 
* See Appendix, p. 90. 
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V H = T 
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f \ 2 Q 

( A ) 

Y h =1 

X 

A to E. Complementary Utility. 
F I G U R E 4 . 

For some purposes the utility surface may be considered to be 
a conicoid with sufficient approximation, without implying that 
this is the general form. We may then write its equation in the 
form 
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« (X> 
F. Independent Utility. O to K. Alternative Utility. 

FIEXNTE I . 

Z = V(x0 + x, y0+y) 
= V (x0 ,y0) + x VXo +yVyo + ^ Vxoxo + xy + \f V^* 

where Vx x0 stands for the result of writing x0 for x and y0 for y 
in the second partial derivative of V with respect to x, &c. 

See Appendix, p. 91. 
D 
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Here the products of cubes of x (the distance from the starting 
point) and third derived functions are neglected. 

Paying regard to the known signs of the differentials, we may 
write = - 2 f , J^ = -2 a, Vy^ = -2b, where 
a, b,f, and g are positive. 

Write fXo7Jo = —2 h. h is zero if X and Y are independent, 
positive if their uses are complementary, negative if they are 
alternative. 

Measure utility as above a zero level at which x0, yQ are the 
quantities possessed. 

We have z = — (ax2 + 2 hxy + by2) + 2gx — 2fy. 

A's offer curve is 
ax2 + 2 hxy + by2 — gx +fy — 0, 

and his demand curve 
bp2x + 2lipx+fp->rax—g = 0. 

Independence. The indifference curves are similar and concen-
tric ellipses, which become circles if a = b. Figure 4, f (p. 17). 

In the sequel take a — b = 1 by a suitable choice of units. 
Complementary uses. The indifference curves take the shapes 

of Figures 4, A to E as h increases from zero. When h — 1 they 
are parabolae.* If also f = —g, z — — (x+y)2 + 2g (x+y), 
Figure 4,C and in any one indifference curve x+y is constant 
and p — — 1. 

Such a case would arise if a landowner was paying for buildings 
on part of his estate by giving parcels of land, and reached a point 
at which he would only accept further buildings if land were given 
back with them. 

If Ji < 1, we have ellipses ; if h > 1, hyperbolae. 
Alternative uses. As h diminishes from 0 to — cc, the curves 

take the forms of Figure 4, G to K. When 0 >A > — 1, the curves 
are ellipses, when h < —1, hyperbolae, when h — — 1, parabolae. 
If, when h = — f — g, we have straight lines as in Figure 4,1; 
x—y is then constant, and p — 1. This occurs when it is com-
pletely indifferent to A whether he has X or Y. 

* The figures are drawn from the equation z = — x1 — 2hxy — y1 + 10x — 2y, 
except Figures 4, c and 1 where the coefficient of y is taken as 10 and as —10 
respectively. 
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MULTIPLE EXCHANGE 
§ 1. Notation. 

It is not difficult to extend the principal results of the first 
chapter to any number of persons and commodities. In this 
part of the analysis the first essential is to make sure that the 
conditions supposed are sufficient to give a determinate solution 
and that no condition is redundant. This chapter is devoted to 
the exhibition of these conditions without any reference to the 
cost of production. We assume that persons have in fact 
quantities of commodities, of which one may be money, which 
they are willing to exchange with each other. 

Let there be m commodities called Xx, X2...Xr...Xm, and 
n persons, A, B, 0. . . , shown by prefixes 1, 2, 3... to the quanti-
ties and functions related to them. 

We shall regard the tih person and the rth commodity as 
typical, where t stands for any number 1 to n, and for any 
number 1 to m. 

Suppose that the tperson starts with tar units of Xr, and 
after exchange has = tar+txr. txr is positive if he is receiv-
ing and negative if he is giving, the symbol involving the 
necessary sign. 

[ In Chapter I A was giving a positive quantity y ; this would 
now be written rx.2 = —y ; the other letters correspond as follows : 

=y> 1X1 — 2̂ 1 = X> Ial — al> Ia2 = a2> 2ai = èl< 2a2 = 
Let p,: p2: . . . p r : . . . : pm be the price-ratios at which all the 

exchanges between Z l 5 X2... are made. If Xm is money, pm = 1, 
and p1,p2i a r e money prices. 

We have then to determine m xn quantities such as txr, and 
m — 1 price-ratios. 

Let M(t£i' •••tîr---t£m) 1;,e t h e utility to the i!,h person of 
possession or consumption of t£x of Xx, of Ar...t£m of Xm. 

c 2 
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Write tUr for tlie partial derivative of tU with respect to f r . 
tVr is then the marginal utility of an increase in the possession 
of the commodity Xr when are already possessed; 
it depends in general not only on t£r but also on the amounts of 
the other commodities. 

Then if 8 (tU) is the increment of utility due to exchanges 
resulting in increments of ...8 of I',...., we have 

8 (tU) = t Ux. 8 (tQ + ...+tUr.b(t{r)+... + tVm.b (tU * 
= iV1. 8 + ... + tUr. 8 (txr) + ...+tUm. 8 (txJ, 

since t£r = tar + txr and therefore 8 (t£r) = 8 (txr), &c. 
We must now distinguish between two cases, that of competi-

tion or the open market and that of monopoly. 

§ 2. Equations of equilibrium for perfect competition. 
Any two persons A and B interchange quantities of any two 

commodities Xx and X2 in quantities so small relatively to the 
whole amounts exchanged by all persons that their exchange 
does not significantly affect the price-ratios, which are therefore 
not subject to variation in the process of differentiation. The 
price-ratios are the same for all persons. This is the condition 
of the open market. 

Writing the last equation for this case, only xx and x2 varying, 
we have H,U) = .U, . 8 + 1U2 . b 
and 8 (2U) = 2UX. 8 (2x1) + 2U2 . 8 (2x2). 

As in Chapter I exchanges will be pushed till both A's and B's 
utility is maximized, at which position 8 (j Z7) = 0 = 5 (2f7), 

••• i^i • 8 (i®i) + xfa • 8 ( A ) = 0 = 2U, . 8 ( A ) + 2U2. 8 ( A ) . 
Also for both persons the sum spent equals the sum received, 

••• Pi • 1®1 + Pi • 1®2 = 0 a n d Pi • 2®1 + Pi • 2®2 = 
whence 

Pi • § ( A ) +P2-8 (xx2) = 0 = ^ . 8 (^J +/)2 . 8 (2̂ 2) • 
From these equations eliminate the quantities 8 (j^J, &c., and 

we obtain 
— • , 2 7 , = —•- ¡U„ a n d — • „ U , = — • J J „ . 
Pi 1 1 Ih 2h P2 

* See Appendix, p. 94. 
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{ni — 1 )ii equations. 

These equations are of the same form as in Chapter I, but now 
the values of 1U1, &c., depend not only on the two commodities 
exchanged but also on the amount of all commodities possessed. 

Writing similar equations for all exchanges we have 

Maximizing equations 

— • fU, = ... = — . fUr = ... = — 4Um 
Pi 1 1 f , " Pm 

for t = 1, 2...n 
Thus at the position at which the exchanges are completed 

the quantity — . tTJr is the same for all commodities to the same 
Pr 

person, and equals tUm, the marginal utility of money, if Xm is 
money. In simple words, in spending money the greatest satis-
faction is obtained when the transference of a trifling sum from 
one purchase to another would have an insignificant effect on 
satisfaction. If sugar (XJ is 8d. a lb. and butter (X2) 2s, a lb., 
so that \p% = 1 : 3 , then at the final purchase the utility of 
a £lb. of sugar is one-third of the utility of a •§ lb. of butter, and 
¿Cj = J . tU2. 2d. gives the same satisfaction spent either way. 

We have two sets of quantitative equations to complete the 
solution. For each commodity the amount bought equals the 
amount sold. Hence 

Commodity equations 
t=n \ 
2 txr = 0 * for r — 1) 2...m : m equations. 
t=l ; 

Again the sum spent by each person equals the sum received. 
Hence 

Personal equations 
r—vt : 

txr— 0 for t — 1, 2...n \ «equations. 
r = l i 

But the sum of the commodity equations, multiplied by 
Pit Pn &c., and that of the personal equations both give 
2/? r . txr — 0, the summation extending over the m x n terms, 

* This equation is the abbreviation of + ,ara + . . . + ,xn = 0. 
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and therefore one of these m + n equations is deducible from 
the others. 

We have rhen m + n — 1 equations to combine with the 
(m — \)n maximizing equations, that is mn + m—1 equations in 
all. These are just sufficient to determine * the mn quantities 
txr and vi — 1 price-ratios, or, if Xm represents money, in — 1 
prices, f 

An important corollary is that every person can maximize his 
satisfaction at the same time. 

§ 3. Equations of equilibrium for monopoly. 
Suppose now that A produces all of Xx or so much that he can 

influence the price, and consider his dealings with B who cannot 
affect prices when exchanging X2 for Xt. Write p = pjp2-

For B as in the case of competition we have 

P - ZUiAU2 = - » A . 
where — x2 is the quantity of X2 that B gives in return for xx of 
Xj . J 9JJ1 and 2U2, either or both, involve x2, so that x2 can be 
eliminated from the two equations and p obtained as a function 
of®!, say p = f[x.[) the form already used for a demand curve. 

A maximizes JJ, so that as before 
0 = L\8«j -!-1 £2Sx2. § 

Also p . xx + x2 = 0, but now p varies and the equation of varia-
tion 8 (p . xx) + 8 (x2) = 0 does not reduce to p 8 (tfj) + 8 (x2) — 0, 
butto b{x1f(x1)}+bx2 = 0, 

i.e. { / ( « i ) + ®i / (®i) } 8«i.+ 8«s = 0. 
Hence the competitive equation 

Pi Pi 
is replaced by the equation 

A = V 
/ ( « i ) + V ' K ) 1 2 

* See Appendix, p. 94. 
t Actually multiple solutions each giving a set of values of ,xr, &c., are 

possible, but only one set is likely to be applicable to known conditions. 
t x2 = jx2 = -1x1, and = - ^ = & . 
§ See Appendix, pp. 89-91. 
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Since / + xj'{xx) = DXi (pxj = - (tf 2), 
the differentiation being performed on the curve 

»1 • 2U1 + x 2 . 2 U i = 0, 
we may write this equation 

^ + xV2.Dxl{x2) = 0. 
In fact DXl(x2) is the gradient of i>"s offer curve, and 1U1/1TJi 

is the gradient of A's indifference curve, so that the condition is 
that -B's offer curve touches one of A's indifference curves, as at 
Q2 in Figure 1 (p. 5).* Equilibrium is at Q2 instead of at Q. 
But that figure and the analysis in Chapter I assume the existence 
of only two commodities, while the functions in the equations 
just used include quantities of X3, X 4 . . . as well, though these 
are not supposed to vary during the exchange between A and B 
of X1 and X2. 

If A has no use for himself, or his use is satiated, 1U1 = 0 
and the equation becomes DXi (x2) = 0. 

In this case x2 is a maximum in X; 

B's offer curve, as is illustrated in 
the accompanying figure. The hori-
zontal lines are A's indifference lines 
which depend solely on®2. A chooses 
the highest possible point on B's 
offer curve (where DXl(x2) = 0), that 
is where it touches an indifference 
line, as at Q in the figure. 031 — xY, 
MQ — x2, and QM/OM is the price 
of x-y in terms of x2. 

If there are only two commodities and B has the monopoly of 
the second the position is indeterminate without further informa-
tion, for example of the relative strength of A's and .5's positions 
in bargaining. In the figure on p. 5 the bargainers aim res-
pectively at Qj and Q2. In the figure here given B's in-
difference lines would be vertical and A's and -B's offer curves 

* But in that figure it must be supposed that A is monopolist of y, and 
forcing B to give him x on favourable terms, since there he is paying with 
Y and buying X. In the analysis just given A is paying with and 
buying X , . 

*Bs offer 

M 
F I G U R E 5 . 
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indeterminate; A would try to push B up the 0X2 scale, and B 
to push A to the right. A possible equilibrium is when they were 
on the summit of the hill indicated if the indifference lines are 
contours, where they would both reach satiety. 

If there are many commodities, A still monopolizing the first, 
write A's equations 

i ^ - S ^ H ^ s ^ H . . . = 0 
Pi • i®i +P2 • r»2 + • • • = 0 

= 0 
Since as in competition 

p2,iU2=P3'iU3 = - ' 

and *(Pi-i«i) = 2Xl(p1. i * i M W 

we have = I . 77 — JL TT -

where is connected with xx by the aggregate demand for Xx 

of B, C... (see p. 25). 
Then, if also B monopolizes X2, C X3, and so on, in the maxi-

mizing equations j j 
~ . 3 U 3 . . . 

are replaced by — , - — 

but this process must stop before the last commodity is monopo-
lized, for it is found that as in the case of two persons and two 
commodities the problem becomes indeterminate when there is 
no unmonopolized commodity. The final pm cannot be expressed 
as a function of xm. 

It should be noticed in this case and in all cases of maxima, 
that the change in the quantity maximized is very slow as the 
variable moves away from the position that gives the maximum. 
For example, in the figure on p. 23, A will lose little of X2 if he 
gives perceptibly more of Xx, moving M to the right. 

More generally A receives, say, R (xx) = x1f(x1), where 
f ( x j ) = jp, the price at xx from the demand curve. 
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Let x be the value of xx that makes R{x^) a maximum, so that 
f ( x ) + x f ' (x ) = 0, and let x + h be a neighbouring value. 

Then 
R(x + A)-R(x) 

= (x + h).f(x + h)-xf(x) 
= {x + h) {f(x) + h .f'{x)+lhKf"(x)+ ...}*-xf(x) 
= h{f(x)+x.f'(x)}+h*.f (x) + i h* (x +h)f" (x) + ... 

The increase in p is 
f{x + h)-f{x) = hf'{x) + ^f"(x) + ... 

Write 7i = Xx, neglect terms involving A3, and for simplicity 
suppose f"{x), the change of the direction of the demand curve, 
to be small so that we can neglect also A2/1"(5). 

Write —8 2?, — dp for the changes in R,p. Then 
bR \2xY(x) s% ,bp kxf(x\ , - r - = zrrr~z = A"* and — = „,_ ' — A, R xf(x) p f(x) 

so that approximately the relative decrease in the price equals 
the relative increase (A.) in the quantity received by the purchaser, 
while the relative decrease in the amount received by the mono-
polist equals the square of A. If, then, the decrease of price is 
10 % (A = 0-1) the increase in x1 is approximately 10%, but the 
decrease in R is only about 1 %. A monopolist may often find it 
to his ultimate advantage to encourage his customers by not 
exacting the uttermost farthing. 

§ 4. Aggregate demand and supply. 
Let xr be the sum of those of the quantities 1xr, 2xr... that 

are positive, that is of the amounts that are bought; then —xr 

is the sum of the remaining negative quantities, the amounts 
that are sold. 

Let there be ri purchasers, where 11' is ot course less than n. 
The 11' quantities of which is typical are connected by the 
equations 

P r = l U r = ==&= n ' U r , Pm 1 ^m t ^m n ^'m 

* See Appendix, p. 84. 
S761 E 
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where we may suppose for simplicity the terms in the denomi-
nator to depend on money, so that pm = 1 and tUm is the marginal 
utility of money to the ¿th person. We have n ' + l equations, 
from which the 11 quantities such as txr can be eliminated, leaving 
a relation between pr, xr and prices and quantities of commodities 
other than the rth. This may be written pr —f(xr), where, 
though the function involves other commodities, we can study 
the change in pr due to a change in xr (by the method of partial 
differentiation, for example) on the hypothesis that other prices 
and quantities remain constant, or are affected so little that they 
may be regarded as constant. This is the aggregate demand 
equation for Xr, which may be considered by the analysis used 
on pp. 9-12 above. The elasticity at any point on it, depend-
ing only on the value of pr and the direction of the curve at that 
point, is not affected by any ordinary corresponding changes in 
the other quantities. 

An aggregate supply equation can be obtained in the same 
way, but supply is better studied in relation to production as in 
the following chapters. 

NOTE. On universal monopoly. 
Consider the case of three monopolists A, B, C and three 

commodities, and one other person D. Let A monopolize Xlt 

B J 2 , and C X3, producing xx, x2, and x3 respectively, and let D 
possess, but not monopolize Xv Then 

where written for 1x1, 2®2, and 3x3, 

Pi • xi +A • +i>s • 1®3 + Pi • lXi = 0 | 
Pl-2Xl+lh-XZ+lh-2X3+Pl • 2Xi = 0 . . . . ( i i ) 
Pi • ZXl+Pi • &X2 +Ps • X3 +Pi • 3®4 = 0 

V, iU, 
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Pi _ Pa ~ Vx^i*3®3) p* 

Pi P'i. PS Pi 
We have nineteen equations to determine sixteen x's and three 

price ratios. Set aside the terms containing the differential in 
(iii), (iv), and (v), and also the first equation of (v). From the 
remaining fifteen equations eliminate * pi a n d thirteen x's (all 
but xv x2, x3), and so obtain px as a function of xlt x2, x3, p2, 
and p3; then keeping x2, x3, p2 and pa constant we can obtain 
Dx(p1). Then the first equations of (iii) and of (v) enable us to 
eliminate pr and xx. 

We have now eliminated fifteen quantities and have left 
x2, x3, p2, and p3 connected by the three equations 

2^2 2̂ *3 3 3 ^2 3^2 3 '̂s 
AJi^z) _ Pz ' Pi ~ Pi ' Pi ~ -^»„llhxz) 

in whatever form they take after the eliminations. 
From the middle equation express p2 as a function of x2, x3, 

andp3 , and differentiate the equation so found to obtain DXi(p2)-
Then from the first and middle equations we can express x2 and 
p2 each in terms of x3 and p3\ but we cannot connect p3 and x3 

and therefore cannot differentiate p3, which is necessary to com-
plete the solution. 

If, however, the last denominator were p3, as it would be if 
C had not monopolized X3 , the last-named three equations would 
involve the three quantities x2, x3, and p2/p3, which could be 
found ; or we could have simplified the whole analysis by writing 
p3 = 1. 

The analysis can be extended so as to include more com-
modities. 

It is not of course denied that exchange would take place if 
all the commodities were monopobzed, but it is shown that 
further information is necessary to determine the amounts 
exchanged. 

* See Appendix, p. 94. 
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PRODUCTION 

$ 1. Factors of production. 
The indifference curves of a person supplying commodities are 

not decided, except very rarely, by the utility of them to himself, 
but by their cost of production. 

Let the production of Xu X 2 . . . Xm depend on the use of such 
factors of production as capital, labour, and materials, v in number, 
which we will call 1\... Ys... Tv, Ys being regarded as typical. 

We shall have to consider later the laws that govern the supply 
and price of the factors. At present suppose that a producer can 
obtain as much as he pleases of each factor at an unvarying price 
which he cannot influence. 

Any factor is to be regarded as usable in the production of any 
commodity. It will be found throughout that when one is not 
used a corresponding equation drops out. 

The quantity of a factor used for a given quantity of produc-
tion is not fixed, but the increased use of one factor and decreased 
use of others may leave the production unchanged. 

We have to discover the mathematical formulae which measure 
the amounts of the different factors used in the production of one 
commodity, and the relative amounts of one factor used in the 
production of different commodities. We have further to deter-
mine the distribution of each factor among different manufac-
turers of one commodity. 

§ 2. The law of substitution. 
Joint demand for factors. 
First let there be only one commodity and only one producer 

or manufacturer. 
Let yY...ys...yv be quantities of the factors (such as yx hours 

of labour, the use of y2 acres of land, and of £l00y3 worth of 
capital) used in the production of x units of the commodity. 
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The quantity x depends, in a way that is presumed to be known, 
on ...ys..., so that we may write 

® = F(Vi —ys—yv) 
where F is a function of given form. 

Let TTJ ...IRS.... it be the prices per unit of .. . Ys... Tv, sup-
posed given. 

Let p'x be the cost of production of the x units.* 
The manufacturer's aim is so to choose the quantities such as 

ye as to minimize p'. The resulting organization of production 
may depend on the magnitude of x, and the problem must be 
solved for each value of x, which is therefore kept constant in 
the solution. 

We have p'x — •n1y1 +... + ttsys + ... + ttvyv. 
.-. b(p'x) = x.b/ = Tr1.by1+...+Trs.bys+...+irv.byv. 

Also since x does not vary 
0 = bx = Fyi. byi+... +Fys.bys+...+Fyv.byv,f 

where Fv is the partial derivative of F with respect to ys. Elimi-ys 
nate 83^. 

yx + (irs • Fy^—ir^. Fy) bys+ ...}. 

When p' is a minimum bp' = 0 for all possible small variations 
of ...ys f In the last equation by2... bys... are independent 
of each other, and the solution is obtained by putting each 
coefficient equal to zero. 

Then ^ s . F y i = ^ . F y s , 

and - . F = . . . = - . Fy=...= - Fy„. 
TTj "l 77 s y ' TTV " 

This is the law of substitution, which determines the amount 
of the factors used in the production of a commodity. In words, 
at the cheapest cost of production the rate of increment in the 

* The letters with ' always relate to production or supply and the cor-
responding letters without to consumption or demand. For a tabular state-
ment of the complete notation, see p. 46. 

f See Appendix, pp. 89, 90. 
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amount produced by varying one factor alone (or the marginal 
increment) is proportional to the price per unit of that factor. 
A consequence is that at the minimum the transfer of a small 
sum from expenditure on one factor to expenditure on any other 
leaves the price of production unchanged. (Compare the corre-
sponding statement relating to expenditure on commodities 
p. 21.) 

[Tor example, take 

® = F(?/i> y2) = 2y* + 3j/jy2, and tt1= 2, tt2=1. 
Then jfx = 2 9 i +y2, Fy± = 4y1 + 3y2, Fyi = 3yx . 
The solution for x = 10, say, is obtained from the equations 

+ = 10, ¿(4y1 + 3y2) = 3y1; 

whence yx = 1-6, y2 = 1-05, p' = 0-42. 

Geometrically (y1,y2) is the point P, where a tangent * parallel 
to TT1y1 + TT2y2 = 2y x+y 2 = const, touches — 10.] 

§ 3. The supply curve. 
The z>+ 1 equations, x = F(y1...ys,..yv) 

p'x = y+ ... +irsys+ ... +7tvyv 

1 2 3 4 
FIGUEE 6. Production Diagram. 

* See Appendix, p. 92. 
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are sufficient to eliminate tlie v terms such as ys and to give / / 
as a function of x, say / / = 4> (x). 

This is the supply curve for X. 
If x = F= +...+asys+... + avyv, 

so that F„ = a&c., the solution breaks down. In this case Vs A 

/ _ v-i + • • • + Ts vs + • • • + ^ Vv  
v ~~ ai>/i + •••+asVs+•••+avyv' 

so that / /may be anywhere between the greatest and the least of 
such terms as -n/a. If T J / A J is the least, p' is a minimum when 
only }\ is used. This is the extreme case of alternative factors. 

On the other hand, if 1\ and Y2 are only usable jointly in the 
proportion a1: a2, we may write a1y1 + a2y2 = a'y', and replace 

TT1 »1 1T2 ™ 

still having sufficient equations. 

§ 4. The integral supply curve. 
Write ix = p'x, the cost of x 

units of X. 
Then ix — x<p (x) = )> (x), say. 
ix = x (x) is the producer's offer 

curve, and may be called the integral 
supply curve (Fig. 7), to distinguish 
it from p' — <p (x) which is called 
simply the supply curve (Fig. 8). 

£e. g. in the above example 
ix = p ' x = / (2y 1 2 +3y J y 2 ) 

= i . y « 
and 4 ( 4 ^ + 3^) = 3yx. 

Eliminate^ andy2 and we have 

the integral supply curve ; and 

3 Vx 
the supply curve.] 

F = 
ir, a, + it „a „ y 

FIGURE 
2 3 

Supply Curve. 
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§ 5. Elasticity of supply. 
It is evidently important to analyse the relationship between 

changes in the quantity produced and the expense of producing 
them. For this purpose we may use either ju. or p'. 

Write + op ox 

where bx a small increment o f « is connected with — bp' a small 
decrement ofp ' , or proceeding to the limit, write 

p' tp (x) 
xl)xP' ~x<p'(x) 

e is the elasticity of supply, corresponding with )j the elasticity 
of demand. It is generally written with the negative sign, so 
that it is a positive quantity when (x) is negative. 

Write e = ¡i/xD^n, so that e measures the ratio of the relative 
increase of cost to the relative increase of output, while e measures 
the ratio of the relative decrease of price to the relative increase 
of output. " e = l according as the expense of producing [a] 
involves what may be called increasing, constant, or diminishing 
efficiency of money." * 

e has an interesting connexion with the marginal contributions 
(Fyt) of the factors to the production. 

Write ~.Fy = = ...=-.Fyv = L 

TTJ y> 7RS ^ IR„ 

In the curve M = X 
D. 

y t bjj. _ J t •77,by1 + ...+TTsbys + ... 1 _ Li T 
bx = Fyi. 8 byx + ...+F .bys + ... 

= lik/x= (•uly1+...+-nsys+...)k/x 

x r. + r. V* 

Also, since ¡x — p'x, e = Jcp'. 

* This term is used by Mr. W. E. Johnson, Economic Journal, 1913, 
pp. 507 sqq. 
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The relation between e and e is a simple one. 
=p' + xDxp'. 

\x/iX = p' —p'/e. 
1 1 , 7 E .'. - H— = 1 and e = -« e e e— 1 

§ 6. Increasing, constant, and diminishing (or decreasing) 
return. 

We have three cases. 
Increasing return. 

M 

Integral supply curve. Supply curve. 
FXGUKE 9. 

Here e > 1, « is positive and <fi' (x) negative. 
The more there is produced, the smaller the supply price. 

xDxfj. — iJ.< 0, and hence by differentiating x D x j x < 0, so that 
the integral supply curve is concave to the axis of x. 

Constant return. 

p-<Mx) 

Integral supply l ine. Supply line. 
F I G U B E 1 0 . 

Here e = 1. e is infinite, <p'(x) is zero, and the supply curve 
becomes a horizontal line. 

xDxix — ix = 0, DJp = 0, Dxp. is constant, and the integral 
supply curve becomes a straight line through the origin. 

2761 P 
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Diminishing return. 

Integral supply curve. 
0 

Supply curves. 
F I G U R E 1 1 . 

Here e < 1, e is negative and <p' (x) is positive. 
The more there is produced, the greater the supply price. 

is positive and the integral supply curve is convex to 
the axis of x. 

§ 7. Marginal supply prices. 
The supply price, p', is simply the whole cost of the production 

of x divided by x. We may obtain another view as follows. 
The cost of producing x + hx, with the organization of factors 

which minimizes cost at that rate of output, is greater than the 
cost of producing x under the organization appropriate to x by 
the quantity x (x + 8») — x. (x). 

Write 
t x(® + 8 a ; ) - x ( « ) 

òx = X » - A xP-/ » = * ( « ) = u 
Then 

P'm = Vx ix<P (x) 1 = (») + X(t>' (x) = / + xJDxP' 

p'm is a definite function of x, which equals p' in constant return, 
>p' in diminishing return, and <p' in increasing return. 

rx 
Also / p'mdx = p. — p'x, 

J o 
so that p' is the average value of p'm over the region 0 to x. 

p'm is called the marginal supply price, and p'm = <f> (x) the 
curve of marginal supply prices.* 

* See Pigou, Economics of Welfare, pp. 931 seq. 
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£/j'm is not the cost of the last unit produced, but the additional 
cost of producing one more unit after adapting the organization 
of the factors of production.] 

\ 
Q 

T \ 

S " 

M X 
Increasing return. Diminishing return. 

F I G U R E 1 2 . 

In the figures MQ — //, MS = p'm, where OM is the amount 
produced per unit period. 

The area OMQN — p'x = area OMSE, and therefore the area 
ENT = the area TQS. 

The following numerical examples may elucidate the relation-
ship of the quantities : 

Increasing return. 
X Î» P' 

(units produced). (whole cost). (average cost). 
1 20s. 20s. 
2 35s. 171®. 
3 45s. 15s. 
4 50 s. 121s. 

(marginal price). 

x = l ì 15s. 
x = 2§ 10s. 
x = 31- 5s. 

H e r e / = <p(x) = 2 2 ^ - 2 ^ <j>'(x) = - 2 \ , p ' m = 22% - 5 x. 
15s. is the cost of producing two units less the cost of produc-

ing one. With such small numbers the continuity is lost. 

Diminishing return. 
M 
SO 

45 
75 

110 

V 
20 
221 
25 
721 

x « 25 
x = 2J SO 
x = 3J 35 

Here / / = <j>(x)= 17% + 2%x, p'm = 17| + 5x. 
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§ 8. Several manufacturers, one commodity. 
There is little difficulty in obtaining the equation of the supply 

curve, when there are several manufacturers of a commodity, 
who owing to difference in situation or ability combine the factors 
of production in different ways, indicated by the prefixes before 
F. (It may be left to the reader to modify the argument to fit 
the case where the manufacturers use identical methods and 
similar organizations.) 

Let there be ri manufacturers or producers of X, who working 
under different conditions combine the factors in various ways. 

Let ir1...TTs...TTy be the same for all producers. 
Let the tth manufacturer use amounts t^/v-Ûs-'-Ûv the 

factors and produce tx of X, and let x be their aggregate pro-
duction. 

Then 

1 equation. 
ri equations. 

h'(v— 1) equations. 

where tyx is to be written for y t in tFy i , &c., after differentiation. 
Let tj»' . tx be the whole cost to the /th producer, so that 

tp' . = . + ... + »,. tys + . + v ty : ^ ^ 
lor t = 1 ...ri. : 1 

We have now u'v + u' + 1 equations, and n'v quantities such as 
tys and ri such as tx. 

From the v + 1 equations with prefix t we can eliminate 
tVv anci obtain tp' as a function of tx, say, 

tl' = t$(tx)> t = 1 

and combining these ri supply equations with the first equation 
above express x as a function of xp'...tp'...n'p'• 

We need n' further equations to determine these prices, which 
depend on the following considerations. 

If the producers' supply equations show constant or increasing 
return, no equilibrium is in general reached theoretically till one 

x - 1x + ... +tx+ ...+n,x. 

tx = tF(?/i-~!/s~-yv)> for t = 1 

for t = 1 ...ri. 



PRODUCTION 3 7 

has driven all the others from the market or combined with 
them.* But increasing may give way to decreasing return 
when a producer takes on more than he can manage, and in that 
case (not here analysed) more suppliers than one remain. 

With decreasing return and competition, when there are many 
producers and no individual contributes enough to the supply 
to exert a perceptible influence on the price, each will extend 
his production till the cost of producing one more unit (after 
adjustment of factors is allowed for), equals the selling price 
given by the demand curve p — f(x). That is, if bis marginal 
supply price is tp'm, till 

tP'm = t4>(x) + lx4>'(x) = tP' + tx])x{tP') = P =/(«)• 
We have then the n' equations needed, thus 

f(x) = xp'+xxDx{lP') = ... = fp' + txujtp') = ... 

= np' + nxI)oc(nP')-
In the whole problem we have 1 1 ' 2 » ' + 1 equations, which 

are just sufficient to determine n'v terms such as tys, n' as tx, 
n' as tp', and x, in terms of the TT'S and the constants of the 
functions. 

The producer makes a profit (f(x) — tip(x)).t%. The 
relationship of this to rent and surplus generally is discussed 
in Chapter VII below. 

The assumption that an individual cannot affect the selling 
price requires examination. If the price were momentarily at p, 
as given by the above equations, the first producer could obtain 
a greater profit by reducing his production to that given by 

Dx { / («)-I<t> ix)} 1X = 0, i.e. f(x) + xxf'{x) = xp'm> 

if other producers were not affected. As a result it can be shown 
that the selling price would increase, and then the other pro-
ducers would push up their production till the marginal supply 
price of each equalled the new price. This would cause over-
production at the new price, which would therefore fall. The 
above equations therefore give stable equilibrium, if no producer 
is predominant. 

* See, however, Pigou, Economics of Welfare, pp. 439-41. 
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If there is only one producer, or if they all combine, we have 
monopoly, which is discussed in Chapter VII, § 3 seq. below. 

The case of two producers, 1 duopo lymay be illustrated by 
the following simple example : 

Let the demand line be p — c—/c(x1 + x2), and the suppliers' 
lines px = lxxx, p2 = l2x2. 

The first supplier varies xx to maximize 

(c—k (xx + x2) — ?1x1)x1, 
so that he aims at xx given by 

c-2(k + lx)ccx-Jcx2 - IcDXi (x2) = 0. 
The second aims at x2 given by 

c - 2 (k + 1 2 ) x2 -kxx - kDX2 (xx) = 0 . 

To solve these we should need to know x2 as a function of xx, 
and this depends on what each producer thinks the other is 
likely to do. There is then likely to be oscillation in the neigh-
bourhood of the price given by the equation 

marginal price for each = selling price, 
unless they combine and arrange what each shall produce so as 
to maximize their combined profit. 

§ 9. Alternative demand for factors; distribution of the 
factors of production among several commodities or 
among producers of different commodities. 

The general problems of production of several commodities are 
discussed later, but without a complete analysis we can show 
how the proportions of the available factors are distributed when 
manufacturers of different products compete for their use. 

Let be quantities of m commodities produced, each 
by one manufacturer only, and be the cost of producing xr. 

Then f lj,r = tt-L . y r l + ... + tts •yrs+ ... +itv . y r v , 
where yrs is the amount of Ts used in producing xr. 

Then Dyr{jxr) — irs, and similarly 

= -^S/jMi) = • • • = Byrs^r) = • ••Ijyvs Om)-
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Hence any, the sth, factor is used till the marginal increment 
of the cost of the product due to the use of that factor is the 
same for all the commodities. If one person is producing two 
commodities he will have distributed his use of each factor till 
he gains nothing by diverting it from one undertaking to 
another.* 

* See Marshall, Principles of Economics, Edn 1907, p. 84S. 
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SUPPLY OF AND DEMAND FOR THE FACTORS 
OF PRODUCTION 

§ 1. Disutility. Labour. 
So far it has been assumed that to any one manufacturer or 

producer, the prices of the factors (wlf Tr2...) have been invariable 
and known. 

We have now to determine equations relating to these factors, 
to obtain supply curves of the form tt's = <p (ys) and demand 
curves as 7rs — f(ys), and to consider the equilibrium of supply 
and demand. We shall then, in a later chapter, bring together 
these new equations and those of demand for and supply of 
commodities. 

The ultimate factors are labour, capital, and land as defined in 
economics. In production there are also intermediate factors 
such as raw materials and partly manufactured goods, whose 
prices are determinable from the general equations of the next 
chapter and need not be considered here. 

Labour. Let JF(l) measure the disutility of labour, ^involving 
a conception of the same character as U (utility), but of the 
opposite sign, so that W(I) is negative. 

The primitive theory was that a man worked till the fatigue, 
disagreeableness, or disutility of labour equalled at its margin 
the marginal utility of its reward or payment. Thus if he was 
producing T which he intended to consume himself and y the 
amount produced was a function of I, the quantity of labour 
needed, he would maximize U(y)+ Wr(l), and stop when 

hU(y)=-hW(l), 

Uy • D% (y) = — JI'i, 
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when Uy is the marginal utility of y and Wi is the marginal 
disutility of labour. 

Here I>i (y) is the rate of production at the margin where he 
stops. 

If A, instead of working for himself, is selling Y to B, who 
pays him in X, giving x units fory units, he stops when 

81U(x)= - 8 IF (I), 

bJJ 5xdy _ 8 W 
8x by bl bl 

The ratio of y : x equals the price, p, of X in terms of Y, 
= by : bx since it is the same for all units. Proceeding to the 

limit we have A's offer - . -JJX. Di(y) = — Wi, 

while B's offer is x . 2UX = y . 2Uy. 

If the production of y per unit time of labour is constant, or 
if instead of measuring labour by the hour we measure it by its 
output, y = cl, where c is a constant, and (y) — c. By choice 
of units we may take c — 1 and A's offer becomes 

That is we simply write I for y, TP'i for jT^, and XUX for in 
the equations of p. 8. 

The above statement only holds good in modern industry in 
the relatively rare cases of production for one's self or directly 
for a consumer, or at will for an employer or a client. 

It may be amended as follows : 
Either, given the length of the working week, a quantity of 

labour or of Y is offered at any wage it will fetch. 
Then y is knowm, and B's offer gives x in terms of y. 

x/y = 1/p — p2/px is the wage per unit y, p2y is the cost of 
labour and equals pxx, the aggregate wage. Wages are in this 
case determined by the demand for the total of labour available. 

Or, combined labour may fix the length of the working week 
by regard to average disutility of labour, the trade unions 

2761 G 



SUPPLY OF AND DEMAND FOR THE FACTORS OF PRODUCTION 42 

deciding- at what point (haying regard to the demand for labour) 
an hour's wage just compensates fatigue and loss of leisure for 
the ordinary man. In this case the original offer equations of A 
and of B apply, but A is a multiple person. This seems to be the 
best hypothesis for the sequel, the labour being divided into 
a number of groups (by locality and skill) with impassable 
barriers. 

Also it is assumed that in equilibrium all available labour is 
employed, except when we consider labour as monopolized. 

§ 2. Capital. 
We do not need to know the nominal value of capital, but 

only the product which its use in conjunction with other factors 
gives in a year or other unit of time. 

Let tt'c be the offer price for the use of capital giving a unit 
product, just as we took a price indifferently for labour or its 
product. 

The nominal value of capital may be found either by its cost 
of replacement or by discounting its yield, problems which do 
not arise in the general equations of equilibrium. 

Hither, the amount of capital may be taken as fixed—A may 
have capital which is of no use to him, as a man may have labour 
ability which he cannot use to satisfy his own wants—in which 
case the demand curve will be sufficient to determine it'c. 

Or, there may be an offer curve for capital, in which case 
capital is simply the T that A offers in the fundamental equa-
tions. A may either have physical capital (water power or a 
building) which he can use for his own direct purposes, or liquid 
capital which he can spend or invest, or transferable capital 
which he can lend to members of a society outside the group 
considered. This may be taken as the usual case, and in the 
sequel there are included disutility equations for capital. 

Lancl. The classical theory of rent (apart from general theories 
of surplus value) depends on the consideration of the use of separate 
acres of land,* For the present purpose we may regard it as one 

* See p. 70. 
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form of capital. If it is given in extent there is no disutility 
equation and there is one less unknown (y). But we obtain 
greater generality if we suppose that A owns land which he can 
either use for his own pleasure, or for production for himself, or 
lend to another for productive purposes. 

§ 3. Equations of supply. 

Thus for the three factors of production either the amount is 
known, or we have equations of the form 

7TS ' s pr 1 1 

where for the ¿t!l person tW s is the marginal disutility of furnish-
ing the factor Ys, tUr is the marginal utility of any commodity 
he receives in exchange, and in particular tK is the marginal 
utility of money to him. 

This gives the supply equation of a factor of production by 
a person (or multiple person) as 

K 

§ 4. Equations of demand. 

At present suppose the demand to be due to the use of a 
factor for the production of one commodity, X, regarded as typical 
of all. A more general method can easily be obtained by the 
reader after the next chapter. 

W e have 

IM = p'x = xf{x) = TT1y1 + ... + TTsys + ... + TT„yv, 

where p =zf(x) is the demand curve for x, and we take the case 
of no profit when p' — p, while ...irs... is the price at which 
the factor ...Ys... is bought. 

Also we have the equations for the minimum cost of production 
(P- 29) ! ! ! 

F = = _ F — — — F 
7T-. 1 7T V ' 7r ' V>' "1 "s "v 
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Omit ¡x, and eliminate all the y's except ys. An equation is 
obtained involving ys, tt1...tts...ttv, and p. Consider the variation 
of 7rs and ys only and write the demand equation as tts — f (y J 
where the function involves the supposed unvarying prices of the 
other commodities and of the commodity produced. 

In competition tt's = tts, and therefore f(ys) = (ys) gives the 
position of equilibrium. 

Combined labour or suppliers of any factor can maximize 
ys (ir's — 7rs), in which ease 

/ W W ( U s ) = W +9 A' W 
determines the value o fy s . 

§ 5. The share of the factors. 
We have TTs = D ^ ) . 
Write vs = - ^ s / y s f ' ( y s ) ' t l i e elasticity of the demand for Ys. 
If now ys is increased by 8ys, the amount received by the 

suppliers of Ys is increased by 

= • / ' <Jfs) + • bVs = ^ (1 - V W ^s-
This is positive,zero, or negative according as i j s>, = , or < 1. 
If disutility is disregarded so that tt's = 0, then in the case 

where r/s<l, the amount received is greater if the supply is 
curtailed and reaches a maximum at 

'h = L> Aj^sVs) = 
In this case, and in that of combination in § 4 where 

VySws) = nyy,sa), 
a trade union could increase the aggregate income and aggregate 
advantage of its members by raising their rate of wages and 
causing some to be out of work or to work short time. Every 
one, including those at play, could get more. 

The proportion (p) of /x received increases by 

Dys(P). bys = Dy^yJn) . 6ys = ^ - ^ s ) _ ^ . ^ 
\X [X 

since Tts = Dysp., = ^ f ( l - V l s~p ) • s• 
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This is positive only if r;s> 1/(1 — p), and then is the greater 
the smaller is p . * 

The fall in price paid per unit Ys is 

-OTTs = -f(iJs) • ^s = 
Js^s 

* Pigou, Economics of Welfare, p. 710. 



NOTATION. 

n persons A, B, C..., indicated by prefixes 1 ...t...n. 
m commodities Xx...Xr...Xm. 
v factors of production Y1...YS... Yv. 

total quantities of Xv., consumed or saved, wliicb 
equal total quantities produced. 

txr quantity of Xr consumed or saved by tth person. 
tx'r quantity of Xr produced by ¿th person. 
yx...ys...yv total quantities of Y1... used, which equal total 

quantities supplied. 
yrs whole quantity of Ys used in the manufacture of Xr. 
tyrs quantity by Ys used by tih person in the manufacture of Xr. 
ty's quantity of Ys supplied by /-tk person. 
Fr production function of Xr involving yx...ys...yv. 
tp'r average cost of production of tx'r, i.e. cost per unit of 

production of Xr by ttu person. 
p'r supply price of Xr. p'r — (j>r(xr). Supply function. 
pr demand price of Xr. pr — fr(x,). Demand function. 
•x's suppiy Price of Ys. n's = <Ps(ys). 
tts demand price of Ys. irs = fs(ys). 
tK marginal utility of money to tth person. 
tUr marginal utility of Xr to ith person. 
tTFs marginal disutility of supply of Ys by tth person. 
¡ir z= Xr(xr)> c o s t producing xr. 
e = n/xl)xfx. 
tp. expenditure of ¡ith person in unit time. 
t] — —f(x)/xf'(x) — elasticity of demand for a commodity. 
e — —<p (x)/xcj)'(x) = elasticity of supply. 
Vs = -fs(ys)/ys-<Ps(ys) = elasticity of demand for Ys. 
^ («) = / ( » ) ~<t>(x)=P - / • 
mt — tp'. x — cost of producing x by Ith person.* 
tP'm — marginal supply price of tth person in producing X, or 

average cost of production of Xm by ¿th person, according to the 
context. 

* Written ¡J. on pp. 34-5. 
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GENERAL EQUATIONS OF SUPPLY AND DEMAND 
IN A STATIONARY POPULATION 

§ 1. Interdependence of equations. 
In the preceding chapters we have studied particular aspects 

of supply and demand under various hypotheses which limited 
the generality of the results; in order to reduce the unknowns 
to the number of conditions stated and to make the problems 
determinate it was necessary to assume that other quantities 
were for the time being invariable. 

In fact the actual determination for any price or quantity 
involved depends on every other; we can only obtain a complete 
solution if we restrict our universe to two persons and two com-
modities, as in Chapter I, or extend it and include all conditions 
in any interdependent series of equations, as is done in the 
following paragraphs. 

The notation of the previous chapters is followed, and their 
principal equations are introduced without further proof. 

Let a community contain n persons who have no external 
commercial dealings (a restriction which can be modified without 
difficulty), who produce or manufacture and consume m commo-
dities (such as Xr), whose supply depends on v factors of produc-
tion (such as Ts), the whole occurring in some fixed period, such 
as a year. 

Let the tt:h person produce tx'r of the rth commodity, and 
supply ty's of the factor, and let him consume or save txr of 
the rth commodity. 

The equations allow for every person producing and using 
some of every commodity and factor, but it will easily be seen 
that when any of the quantities is zero a differential or other 
equation drops out. 
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§ 2. Supply equations. 
Let onr be the total amount of Xr produced, which is also the 

amount consumed or saved. 
Let tt1...tts... be the prices of factors per unit, taken as the 

same to all producers. If there is monopoly of any factor so 
that its supply price TT' does not equal the price TT paid for it, 
we should have sufficient additional equations of the form 
S (v1—ir'1)y1 = 0 to allow the solution to be extended over the 
additional unknown. 

Write ys for the total amount of Ts used by all persons for all 
purposes, yrs the total used in the manufacture of Xr and tyrs 

the amount used by the ¿th person in the manufacture of Xr. 
ys is also the total amount of Ys supplied. 

Let tp'r be the average cost per unit of Xr to the tih person in 
the manufacture of Xr. 

We have the following equations : 

Amounts produced 
t=n 

xr = ^ tx'r f°r r = 1 > 2 ... tit : m equations. 
t=l 

Production functions 

iX'r = tFr iûn—tyrs- • •tVrv) f°r ^ ~ j ' \ ^ 

Supply of factors 
Î = M 

y s = 2 tfs for « = i, 2...1; 
<=i 

Whole use of factors 
r=m 

ys = for s = 1, 2 ... v v equations. 

mn equations. 

v equations. 

Use for separate commodities 
t=n 

yrs = 2 tVrs 
i=\ 

for 1, 2 . . . m 

1, 2 . . . v 
mv equations. 
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Cost of production 

4 9 

^r f ¿ = 1 , 2 . . . » 
tPr-lx r=Z*s-t?/rs for r = ^ g ,.,m 

s=l 
Law of substitution 

LDyAtFr)=...= ^Dys(tFr)=... 

1 
yjtFr) for , = 1 ; 2 ; ; ; = - D 

Disutility of supply of factors 

t— 1, 2 ...n 

m 

mil equations. 

mn (v— 1) equations. 

I w, = ... = I . t w , s = . . . = l . i r „ 
1 TV »i; equations, 

= — tK for t — 1, 2 . . . » 

where tK is the marginal utility of money to the ¿th person, not 
necessarily constant. 

We have mnv + mn + mv + nv + m + 2 v equations for determining 
mnv * quantities such as 0rs 
mn * 55 5 i tx r 
mn 55 55 tP'r 
mv * „ 55 V rs 
nv * 55 55 ty's 
m }} 55 xr 

V * 55 5) ys 

2,* 55 55 •"s 
71 53 }} tK 

Eliminate those marked * and so obtain in. supply equations f 
involving quantities such as xr, tp'r, and t<. 

If there is only one producer of each commodity and the costs 
per unit are p\...p'r...p'm, or if there are several producers each 
with these costs, then we have p'r instead of 1p'r, 2/5'r , ,> f°r 

each value of r, and in equations involving quantities such as 
xr,p'r, and TK. 

f If during the exchange of Xr the variations in the quantities 
and prices of all other commodities and of the marginal utilities 

t See Appendix, p. 91. 
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of money are negligible, these give simple supply equations 
p' = <pr(xr) as before, <pr involving the unvarying quantities 

• • —•]- xr+x...xm, and ^fc...^*.] 
If there are many producers of Xr under decreasing return,f 

none on a scale to affect p' r the joint offer price, the iith person 
adjusts tx'r so as to maximize (p' T —fV' r) • tx'r> we have 

P'r = tP'r + txr • t for _ J »m equations. 

If a person's limit is reached before the maximum, his (xr is 
that of his greatest capacity. 

These combined with the previous equations suffice to eliminate 
the mn terms tp'r, and we have in all cases m equations involving 
such quantities as xr, p'r, t<. (Result A.) 

If a number of producers combine, they are to be treated as 
one producer whenever their combination affects the market. 

§ 3. Demand equations. 
Amounts consumed 

¿ = H 
xr - for r = 1, 2...?« ; m equations, 

where xr, the total consumption, is the same as the total supply. 
Utility equations 

•— . 4 TJ-t = . . . — — . J JJ' = . . . — — . J U rn, ~~~ t ̂  
p1 1 Pr Pm • mn equations. 

for t = 1, 2...n \ 
Eliminate the mn quantities txr and so obtain m demand equa-

tions connecting quantities such as p.r, xr, and tK. (Result B.) 
[ I f during the exchange of the rth commodity variations in 

the prices and quantities of all other commodities and in the 
marginal utilities of money are negligible, this gives simple 
demand equations pr = fr (xr) as before, where f involves the 
unvarying quantities x1...xr_1, xr+1...xm, xK...nK.] 

f There can be only one producer in the long run under constant or 
increasing return, see pp. 36-7 above. 

% The left-hand side of the equation - ¿p'm the marginal supply price, p. 34. 
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§ 4. Combination of supply and demand equations. 
We have from Results A and B 2 m equations involving such 

quantities as xr,pr,p'r, tK< or ^ tK i s eliminated 2 m—n equations 
for 3m unknowns. 

To complete the solution we have still to introduce two sets of 
relations, similar to those in Chapters II and III, pp. 21 and 37. 
The first takes into account the whole income of each person 
from the supply of factors or the net value of production, which 
must equal his expenditure together with saving. The second set 
connects px with p\, p2 with p'2, &c. Thus for each person 

Income = expenditure + saving. 
Income from supply of factors is the sum of such terms as 

77 s . ty's, and that from production or manufacture of commodities 
the sum of such expressions as tx'r . (pr— fp'r), the excess of 
selling over cost value. 

Hence for the ¿th person 

! n equations. 2 • ty's + 2 iPr - tP'r) • tx'r = 2 A • t*r 
s=1 r = l r=1 

for t = 1, 2...11 : 

But the total of the left-hand expressions equals (from the 
cost of production equations) the total of the right-hand expres-
sions, when all incomes are added together, and therefore the 
group gives only n— 1 new equations. 

Now combining all the equations, and eliminating 11 such 
terms at (k , we have 2 m — 1 equations connecting the 3 m quanti-
ties such as xr,pr,p'T, all other quantities being eliminated. 

To connect pT with p'T we must distinguish between com-
petition and monopoly. 

When the exchanges take place under competition | 

Pr = P'r, 

or when there is producers' monopoly * j in equations. 

%{Pr~P'r)xr = 0 f o r r =1,2...m, 

where pr and p'r involve xr. 

* For consumers' combination, see p. 64 below. 
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Eliminate p'r and we have 2«z — 1 equations, sufficient to 
determine x1...xm and the price-ratios p±:p2: ... : pm. 

If the mtb commodity is money, pm = 1 and all prices are 
determinate. If money is solely precious metal produced and cir-
culated commercially, x'm (the amount of it produced) is obtained 
from the equations. If the supply of money is gerrymandered, 
so that the tth person obtains mt units of currency for nothing, 
mt would be added to his income ; but analysis is not capable of 
dealing with undefined political interference with currency. If, 
however, the aggregate income as in a socialist state were given 
and the method of its distribution, the equations might become 
determinate. 

The above analysis has proceeded by successive elimination, 
but it is evident that there are sufficient equations to determine 
every x, y, p, n, &c., involved. Further, a change in any one of 
the multitudinous equations affects the solution for every quan-
tity and price ; the whole is interdependent, and it is only by 
arbitrarily assuming constancy where none exists that isolated 
examination is possible. We can, however, with due caution 
assume that when one quantity varies some consequent varia-
tions have negligible effects ; and we can also after eliminating 
a group of quantities study interactions in the remaining group. 

In the groups of equations those which express mere identities 
should be distinguished from those which depend on volition, 
and the hypotheses relating to the latter should be specially 
studied. They may perhaps be classified as industrial, commercial, 
or hedonistic. 

Industrial-, the law of substitution involving 

Commercial: the maximizing of 

{p'r~tp'r)-tx'r> (P'r~l>r)xr> K-w'i)^, 
where some absence of competition allows it. 

Hedonistic : —., IV' — — tK = —. tUr. 
*s Pr 



IN A STATIONARY POPULATION 53 

It is only this last group that is seriously open to criticism. 
It depends ultimately on the idea discussed in the opening 
pages (1-3), and it should he noticed that it does not involve 
the third postulate. 

There remains the general assumption that persons in economic 
matters act under economic motives with adequate knowledge. 
There are many transfers of wealth on other grounds, and the 
equations are not always pressed to the maximum. Also 
io-norance and miscalculation are common, and the mere clinging 
to custom may prevent advantageous changes. 

§ 5. Stability of equilibrium. 
The whole solution is statical. If exchanges were established 

at the rates given by the equations, no forces would disturb them 
till some of the constants involved (such as the number of 
persons) changed. The questions at once arise whether there 
is more than one set of solutions and whether the equilibrium 
is stable. 

There is nothing in the nature of the case to prevent multiple 
solutions, but in practice if we had any numerical values there 
is not likely to be difficulty in knowing which set is appropriate. 
Whether the position is stable can be judged from the inter-
section of the pairs of demand and supply curves for each factor 
and commodity as discussed in the following chapter. There is 
stability if the supply curve crosses the demand curve from 
below on the left to above on the right. If an unstable position 
were momentarily obtained, there would be adjustment till the 
next position of stable equilibrium was reached. 

Though the solution is statical it is generally possible (as in 
most statical problems) to determine in what direction the 
system will move if there is a given change in any of the 
constants, as for example more land, capital, materials, or labourers 
brought into the system. But an actual solution, when defined 
changes take place continually over a period, would involve 
complicated analysis, and little progress has as yet been made 
in such an investigation. 

It should be added that in the preceding analysis the X's and 
Ts have been kept distinct artificially. In fact, the results of 
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one production may enter as materials in another, so that an 
Xr may he a Ys. There is no serious analytical difficulty in 
allowing for this and obtaining the requisite number of equa-
tions, but the treatment would become more complicated and 
would not lead to compensating enlightenment. The marginal 
utility of equations has probably been reached. 

In the following chapter certain problems arising out of these 
equations are discussed. 



VI 

APPLICATIONS OF THE GENERAL EQUATIONS 

§ 1. The inclination of the demand curve. 
As a preliminary we will discuss the direction of a demand 

curve. 
Our equations for one consumer are 

fj. = p1xl + ...+prxr + ...+pmxm, 

~.U1 = ... = -.Ur = ...= -.Um=K, 
P\ Pr Pm 

where xv..xm are bought in a unit of time during which his 
whole expenditure is fx, and his marginal utility of money is k. 

If the uses of XltXz... are independent, U1 does not involve 
any x except xlt and therefore TJn* = DXJTJ^ is zero, and 
similarly Urj T- = 0 for all pairs r, / . 

In this case px = - . L\ is the demand curve, and if K is not 
K 1 

sensibly affected by the amount of dealings in Xx, I ' x jh ~ " i i ' 
which is negative if utility grows by diminishing increments 
when xx increases by equal increments, an assumption discussed 
on p. 13 above. 

If the uses are not independent, we have (K still constant) 
kDxPi = Un + U12. DXI (x2) + ..., (see Formula 7, p. 88) 

and the sign is indeterminate till we have further information. 
There may be cases where U12 and DXi (x2) have the same sign 
and their product is greater than — 67u. 

Consider two commodities only, and let ¡x and p2 be kept 
constant while plt xx, and x2 change. In such a case K is not 
constant. 

* ¡7j stands for Dx (¡7), x2...const., and ~Ui2 for D^ (&,), xu ar3...const. 
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The equations are pxxx +p2x2 = p., 

2 h • V i ~ P i • U 2 = 0, 

which will give the demand curve for xx, if x2 is eliminated. 
To examine these, take the utility surface iu the form 

U — —ax2—2 hxx x2 — bx2 + 2gx1 + 2fx2, 
so that Ux= — 2 (axx + hx2 —g), 

U2 = -2(/:xx + bx2-f), 
Uxx = -2a, UX2 = -2h, U22 = -2b. 

a and b are then positive. 
Then p2 (axx + hx2-g)-px (hxx + bx2-/) = 0, 

and, x2 being eliminated, the demand equation for xx is 
bp2 . xx - 2 hp2 . pxxx - (,u.b-p2f)px + up* . xx + \i.hp2—p2g = 0, 

where px and xx are the only variables. 
Then 

• (2 xx — 2 ftp2 xx + p2f— M b) = -bp2+2hp2px-ap 
which can be expressed as 

Bxpx. (bpxxx - hp2xx + ip2 U2) = - bp 2 + 2hp2px - ap2, 
where a, b, and U2 are positive. 

If h is zero or negative, i. e. UX2 zero or positive, and the uses 
of Xx and X2 independent or complementary, then Dxpx is 
negative. 

§ 2. The ease of alternative demand. 
If li is positive, i. e. the uses of Xx and X2 alternative, then 

JDxpx may be positive or negative. 
A case is found in which Dxpx is positive, when the utility 

surface is ¿|= -xxx2 + 4 0 ^ + \00x2, 
and the income equation is 

pxxx +p2x2 = 840, 
and p2 is fixed at 40. 

Then Ux = 40— x2, U2 = 100—«j, and the demand curve is 
found to be ^ - 5 0 ^ + 380 = 0. 

which is positive when ^ < 5 0 . 
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If at one time px — 10, then te1= 12, x2 = 18. Now let px 

rise to 12; then xl— 18J, x2—15^ satisfy the equations. 
That is, a rise in the price of Xx causes a greater consumption 
of Xj and a smaller consumption of X2 in these particular 
conditions. 

Similarly, if the price of were fixed, we should have 

•a* (A) = 2 - ^ 

and, if p2 rose, x2 would increase if it started at less than 20. 
Mr. W . E. Johnson deals with this problem more exactly in 

the Economic Journal, 1913, pp. 500 seq.—pages which suggested 
the paragraph above. ^ ^ 

As the double result is surprising it is 
worth while to show that it can be 
i l l u s t r a t e d . L 

A purchaser wishes to spend £840 on 
land for a house and garden ; he wants 
at least 15 yards frontage, and apart from 
that he aims at maximizing the area. A 
rectangular plot has frontage 40 yards 
(AB), and depth 100 yards (AD). A pur-
chaser buying frontage AK (x2) obtains 
the land AKTD, and may buy an addition 
in the strip TCBK at £p1 a yard measured 
from C; he can only buy up to say half 
this strip. Let him buy CL (xx). The 
portion not bought is shaded.  

The area bought is A X2 K B 
F I G U R E 1 3 . 

40x 100 — (40 —X2) (100 — tf^), 

and the amount spent is p1x1+p2x2 = 840. Hence we have 
the equations just given. 

At p2= 40, px — 10, the corner point II is at xx— 12, 
®2 = 18. 

At p2 — 40, pl — 12, 2 / j is at xY — 18§, x2 — 15^ ; thus xy 

is increased ; but atp2 = 42, P l = 10, J/2 is at xx — 8,x2= 18-1, 
and x2 is increased. 

2761 I 
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§ 3. Demand for and supply of one commodity : competition 
and monopoly. 

"We now return to the subject of Chapter II, no longer con-
sidering exchange between possessors of goods as there, but 
separating producers from consumers. 

If tfj. is the tth- consumer's expenditure in the unit of time, and 
the other letters have the same meaning as in Chapter V, 

r=m f 

fjj. = 2 P r • txri for rf = 1, 2. . .« ; n equations. 
r~l 
t~n : 

xr = 2 t x r > f°r r = 1, 2...m j m equations. 
¿=i i 

p1't^Xl~~'" pr't^r~"' Pmt^m' i «('«— 1) equations, 
for t = 1, 2...n j 

Eliminate the inn quantities txr and we have m equations 
connecting such quantities as pr with such quantities as xr and 
¿¡j.. Suppose the p's given. Solve these equations separately 
for the p's and we have demand equations 

Pr —fr (xi-• -xr-• -xni>-

Similarly from pp. 49, 50, if we take the marginal utilities of 
money to the producers as constant, we have supply equations 

Pr = <f>r (x1...xr...xm). 
Though all the ¿s's are involved in each equation, we may 

study their variation independently. Supposing then all the 
quantities except those of to remain unchanged, we have for Xt 

P =./»> P' = 4>(x)-
Ignore such exceptional cases as those treated in the last 

paragraph and take f (x) to be negative. 
(p'(x) is positive, zero, or negative according as the return is 

decreasing, constant, or increasing in the sense of Chapter III. 
Pure competition. Here we suppose that no producer can 

affect the price, and that the entrepreneur's earnings are included 
under one of the factors of production. 

In this case p = p , f(x) = cf> (x) gives the solution. The 



59 APPLICATIONS OF THE GENERAL EQUATIONS 

position is stable when at it the supply curve crosses from below 
the demand curve on the left as in the figures. 

T 

H N 

M X R 

^ V Q A 
E G "^-f T 

H N 

K X 
Decreasing return 

O K 
Constant return 

O K H N X 
Increasing return 

F I G U R E 1 4 . 

For if the price NQ at the quantity ON gives the intersection 
of the curves, then if less than ON is produced the demand price 
is higher than the supply price and production is increased, while 
if more than ON is produced the excess cannot be sold at so 
much as it cost and production is diminished. 

Monopoly. Suppose that there is only one producer* and that 
the consumers have no alternative for the commodity and are 
not combined. 

If the monopolist aims solely at maximizing his profit, he will 
fix x so as to make (p—p')x a maximum, where p' is his average 
cost price when he is producing x in the unit of time. 

Then if a production xx gives the maximum, xx satisfies 

= o. 
Write ^ (x) for f(x)-<j> (x). Then 

\}f (Xj) + x^/ (xx) — 0. 
In the figures 

OK = xlt KR = f(xj), KE = 4> ER = $ (xx). 

xx . (^'(Xj) = T2L, positive in (i), zero in (ii), negative in (iii) ; 
xi -f (®i) — where TXR, 1\ E are tangents to the curves, 
and OK is the quantity at the maximum profit, 

ER = (Xj) = ~xx. f f a ) = T2L + M1\, 

and therefore ER = \1\T2, in all cases. 

* The profits of individual producers in competition, and of two producers 
in duopoly, are discussed in Chapter I I I above. The former case is also 
inc luded in the general equations. Here one important case is discussed 
in more detail. 
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In competition the quantity would be ON, and the price would 
be NQ if the curves meet at Q, if monopolizing did not alter the 
supply curve. 

Let the tangents meet at G and draw Gil perpendicular to OX; 
then OK = | 011. 

Consider the relative positions of II and N. If in the regions 
HQ, EQ the curves are approximately straight, G and Q and 
therefore II and N nearly coincide, and supply under pure mono-
poly is approximately half that under pure competition. The 
increase in price is of course in all cases —f{0N) ; this 

NQ 
equals — - where r\ is the elasticity of demand at Q, if the tangent 

21? 
at Q is a sufficient approximation to the curve QR. The rise is 
the greater the less the elasticity. 

In fact, however, the increase in price made by the monopolist 
is influenced by certain considerations. 

The process of monopolizing may introduce considerable reduc-
tions in cost of production, but the supply curve would have to 
be lowered very greatly (in the case of constant return approxi-
mately by LT-j) to bring Ii back to Q. 

If the price is high there is an inducement to use substitutes, 
and the public may tend to give up the use of the commodity. 

If profits are great, there is an inducement for rivals to try 
to break the monopoly. 

If in deference to public opinion the monopolist lowers the 
price he may make a small sacrifice in his profits and increase 
the output perceptibly (see p. 25). If t] is elasticity of demand, 
the quantity will be increased from xx to 3^(1+A.), if 

the price is lowered from p to p(l— while the profits fall 

only from P to P(l—X2 ) , approximately. 
If the monopolist makes no economies and exercises his power 

to the full, it will be seen from the figures that in ordinary cases 
of constant and of increasing return OK is less than \ ON, while 
in decreasing return it may be greater or less. 

§ 4. Various questions of monopoly and combination. 
I. There is nothing to prevent monopoly in the production of all 

commodities, if the factors of production are not also monopolized. 
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If in the general equations Xm is money and therefore pm = 1 
and there is only one producer of each commodity, we have (as 
on pp. 49, 50) sufficient equations to obtain 

pr =fr(xv..xr..xm), p'r = (f>r(xv..xr...xj 
for each commodity, and the monopolists' equations 

8 {Pr~P'r)xr 
are not inconsistent with each other. 

II. If production is not, but the factors of production are, 
monopolized, so that the first person controls Y1, the second Y2, 
and so on : 

In the case of the first factor zy\-.-ny\ are zero, the 

equations — . tW2 = , — . tW3 = , &c. drop out, and the 

supplier aims at maximizing (1^ — 7r\)ylt so that 

S i K - A ) ^ } = 0. 
For example, take the case of one commodity Xx, two factors 

Yx, 7o (say labour and capital), and one multiple purchaser with 
prefix 3. 

The demand curve for Xx is —. 3tq = 3k, say px =f(x1). 
Pi 

The producer's equation is xx 

I f = 1 F 

and, if the producer makes no profit, 
Pixi = TtiSti + Wv 

Eliminating P l and xx, we can obtain separately ir1 and ir2 as 
functions of yx and y2. 

Let the supply equations of the factors be 
A = <t>i(li) a n d = $2(12) • 

Then if yx and y2 are independent of each other, the monopo-
list equations 

{(77, - TT\) yx} = 0 and I ) Y I { (TT2 - TT2') y2} = 0 
are capable of solution and give determinate results. 

Similarly all the factors can be monopolized with determinate 
results. 
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III. Bilateral monopoly. If, however, the producer is also 
monopolist and makes a profit, the case is different. 

For simplicity take only one factor. 
Oar equations are 

Pi=f(*i), »1 / r » ! - ^ , A = 
Take F(y1) = yx for further simplicity. Then 

P'l = ""l, Pi = / ( » l ) > Tt\ = <f> (»i) 
are the only equations. 

Manufacturer tries to maximize { / (a^) —TJ-j} xx. 
Labourer „ „ (a^)} xx. 

The manufacturer fixes in a particular TT1 and produces x\ to 
make his maximum. At the same TTj the labourer furnishes x'\. 
There may be a value of •n1 for which x\ = x'\, but without 
collusion it will not be obtained. 

This result, that with one factor and one user of that factor 
the equations become indeterminate, is obtainable with less 
simple hypotheses ; but the method used can be extended to show 
that universal monopoly of all factors and all production leads to 
indeterminate results. 

IV. Consumer s combination. The next question to examine is 
whether purchasers of goods can obtain any advantage by acting 
together instead of competing, and what special power is in the 
hands of a person who is the sole purchaser of some special 
commodity. 

Let j'' = <p (x) be the supply price of X. 
If a purchaser cannot influence p' his gain in utility by pur-

chasing x units is a maximum at that position on his own offer 
curve where Ux = up'. (Point Q, Figure 5, p. 23.) 

If, however, he can influence price he can aim at that point 
on the seller's offer curve, where it reaches highest up the 
purchaser's utility surface. (Point Q2, Figure 1, p. 6.) It can 
readily be shown that at this position Ux = kBx {x<f>(x)}* 
from the consideration that one tangent at Q2 touches both 
curves, and therefore Vx = k<f>(x) + Kxcf)'(x).f 

[Otherwise, his gain in utility is U(x) -kx4>(x), that is the 
advantage of receiving x less the utility of the money he pays. 

* Offer curve y = xp(x), gradient of utility surface U /k. 
t See Economics of Welfare, p. 283. 
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If k is taken as constant, this is a maximum when Ux = Kp', if 
p' is constant, and when Ux — kP' + kxDxp' when p' varies.] 

Write p = - TJX — f(x), for the equation of the purchaser's 

demand. 
In the case of decreasing return 4>'(x) is positive, of increasing 

return it is negative. 
I f Q is the intersection of the demand and supply curves, the 

quantity ON will be sold at the price NQ, if the purchaser 
cannot influence price. 

A 

/ 
/ 

K 

M N - X 
Decreasing return 

F I G U R E 1 5 . 

Increasing return 
F I G U R E 1 6 . 

If he can influence price he will get the greatest advantage at 
a quantity OM and a price MK, when MK produced meets the 
demand curve at a point R, such that if KT parallel to XO meets 
OP at T, TR is parallel to the tangent at K; for then 

x . 4>'(x) = KR = MB-MK = f{x) — <j>(x) =\UX-<p(x), 

the condition required. 
By reference to p. 34 it will be seen MK is the seller's mar-

ginal supply price at M. The proposition may then be stated 
thus : under competition the purchaser pays the seller's supply 
price, while if the purchaser is only one (or several combined) 
while there are competitive sellers, he can pay the seller's 
marginal supply price. 

Wrhile in diminishing return purchases are restricted and the 
price lowered, under increasing return the lowering of price 
and the maximizing of purchaser's advantage is obtained by 
extending the purchases. 

In both figures draw QL and RS parallel to XO to meet OP, 
and let QL meet RK in II. 
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In decreasing return the loss of utility from the decreased 
possession of X is 

V{O.N)-U(OM) = f°NUx . clx = MNQIi. 
J OM 

The gain by decreased expenditure is the gnomon TLQNMK. 
Excess of gain is LTKH— QHR. 
In increasing return the gain of utility by possession is QNME, 

the loss by increased expenditure TKMO — LQNO, and the excess 
of gain is LTKH- QHR as before. 

The general position when either buying or selling may be 
competitive or not may be further elucidated as follows. 

If there are two persons, A buying and B selling X, and A paying 
and B receiving J (money), then A's offer is 1JJx—p . x/c = 0, and 
B's offer is 2UX—// . 2k = 0. 

If B raises his price above p', he makes extra profit, and some 
one else will presumably undersell him. But if he has monopoly 
he aims at 8 (p — / / ) x = 0. 

A may, however, refuse to buy at the higher price, and both 
are satisfied only at p = p', 2/c. ̂ Ux = jK . 2UX. 

If there are several buyers not in collusion and B is the only 
seller, B can fix price. 

If there are several sellers not in collusion and one buyer A, 
A can choose p' so as to maximize his net gain in utility, which 
will give the position illustrated by the figures above. 

Since the analysis of consumers' combinations is not so 
familiar as that of seller's monopoly, a numerical illustration 
may be studied with advantage. 

Let the supply equation be p' = <fi (x) = 30 — 2», and let the 
purchaser's utility be V(x) = 42x — Zx", so that the demand 
equation is p = Vx = 42 — 6x = f(x), being taken as unity. 

Then the purchaser's net advantage is maximized when 

U(x) — x(p [x) = \2x-x- = 36 — (x— 6)2 

is greatest; that is when x = 6, p' = 18. 
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The competitive price on the other hand would he where 
f(x) = 4> (x), x — 3, p' = 24. 

X U(3C) Ux </>(*) x<p(x) ¡7(a). 
2 72 30 26 52 20 
3 99 24 24 72 27 
i 120 18 22 88 32 
5 135 12 20 100 35 
6 lii 6 18 108 36 
7 147 0 16 112 35 

Now if the demand was made up by two identical demands, 
viz.: ffa) = 42 — 12xlt each for xx half the former quantity, 
then if they competed they would each sptend 36(I. on articles, 
at 24r/. each ; if they combined they could each get 3 for 54d., 
at 18d. each. The net utility for each is 42x1 — 6x12—p'.xx, 
which is 13^ when xx — and p' = 24, but 18 when xx = 3 
and p' = 18. 

This is a case where two people by combining are able to 
take advantage of increasing return in supply. 

In decreasing return the advantage is obtained by restricting 
purchases. Thus if we write (p (x) = 30 + 2», V (x) being as 
before, in competition each person buys -§ at p' = 33, and his 
net utility is 3§ ; in combination each person buys f at p' = 32-f, 
and his net utility is 3-6. 

This is a case where two people avoid the expense of in-
creasing the supply. 

§ 5. Joint and composite demand and supply. 

In the general equations there was no assumption that the 
demand or supply of the commodities or factors were independent 
of each other, and in the first section of this chapter special 
cases of dependence were considered. But it will be useful to 
show how the various problems considered in Marshall's Prin-
ciples of Economics, bk. v, chap, vi (in the text, notes, and corre-
sponding Appendix), are related to the system. 

The X's are ' consumers' goods', ' of the first order', 1 in direct 
demand'. The Z's are 'producers' goods and factors', 'o f the 
second order', ' in indirect demand '. 

2781 K 
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The quantities yrl-..yrs...yrv (see p. 48) are jointly demanded 
for the production of xn as for example labour, coal, ore, transport, 
pig-iron. 

The quantities yls...yrs...yms are under a composite or alterna-
tive demand for use in various manufactures : e.g. Ys may be labour. 

The necessary equations for these two cases have already been 
given. 

Composite or alternative supply occurs when a want can be 
supplied by Xr or Xr+1 (e.g. by beef or by mutton). Choose 
units (e.g. weight of beef and of mutton) so that pr = pr+1. 
Let the relation be so close that they are perfect alternatives, 
so that txr + txr+1 = txr' (say) cannot be separated into its terms. 
There is nothing to decide the preference of the consumer. 

Then in the utility equations (p. 50) 

— ~ • t^r — ~ • tUr +1 = 
lJr l'r+i 

is replaced by = —J)x t(tUr.) = 
Pr ' 

for each of n persons, and n equations are lost and n fewer 
quantities determined. 

t = n t=n 
Equations xr = 2 ixr and xr+i = 2 txr+1 

t=l ¿=i 
t=n 

are replaced by = ~^,tx'r'> 
i=i 

while the lost equation is made good by pr =pr+1. 
In the expenditure equations + pr . txr +pr+1. txr+1+ is re-

placed by +pr . txr' + . 
The remaining equations are unaltered. The amounts pro-

duced of Xr and X r + 1 are determinate, and the totals of the two 
consumed by each person. 

Joint supply occurs when Xr and Xr+1 are produced by the 
same process in a determinate proportion (e.g. gas and coke). 
I f / , is the proportion for the tth producer, the equation for the 
production function tx'r+l = tFr+1 is replaced by tx'r+1 = lt. tx'r. 
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The equations involving the suffix r + 1 drop out in the cost 
of production, separate use of factors, and substitution of factors. 
In all n + v + n (v— 1) = v (u + 1) equations drop out. At the 
same time the v (n + 1) quantities 

9r+l, s> l ^ r + 1 , 5 ' a ^ r + i , « ! ••• n ^ r + l . s ' o r s = 1,2...P 

cease to exist. 
If we regard as the by-product, then instead of 

8 ( / r + i - | ? ' r + i ) » r + 1 = 0, we have tp'r+1 = 0. 
The demand equations are unaltered and the solution is com-

pletely determinate. 

[More simply, if we consider the supply and demand of 
Xr and Xr+1, ignoring all other changes and assuming no profit» 
and taking only one producer, then 

Xr +1 = lxr> 

Prxr+Pr+lxr+l = «V • 0 (®r)> 

a n d — Ur = — U R + , = K, 
Pr Pr+1 

where <f> (xr) is the cost of producing xr and xr+1 combined, give 
sufficient equations.] 

The commodities Xr and X r + 1 are jointly demanded, if each is 
only useful with the other (e.g. pens and ink). 

Take the units so that one unit of Xr is wanted with one of 
XT+1. Then we have n new equations 

txr = txr+1 f°r t = J> 
while in the utility equations 

1 TT 1 TT 

l'r I r+\ 

are replaced by = . tUr>, 
Pr +Pr +1 

where tUr, is the marginal utility of a unit of Xr and Xrhl 

together, so that these n equations are lost. 
The remaining equations are unaffected, so that the solution 

is uniquely determinate. 
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The Derived or indirect demand for factors of production may 
be studied from the following- point of view. For simplicity 
consider one commodity X ; suppose its demand equation to be 
V =F{°°)> that its production depends on the factors Y1... YV, 
Required to determine the demand for YLT that is the prices that 
will be paid for various amounts of when the prices of the 
remaining factors (which of course are jointly demanded with it) 
are constant. 

We have then the equations : 

from which we can eliminate the quantities y2...yv,p, p' and x 
and so obtain an equation between •n1 and y l t involving the 
constants of the functions and the unvarying prices TT2, TT3...TT1,. 

p = p', if there is no profit, 
x = F(yi,y2---)> 
P =/(»), 

p'x = TT1y1+...+TTjs+...+TT v 

and 
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SURPLUS VALUE, RENT, AND TAXATION 

§ 1. Producers' surplus. 
A surplus is obtained when a producer sells for more than his 

cost price or a consumer buys for less than he is willing to give. 
Thus the various producers of Xr are not assumed in the 

previous sections to incur the same cost price. The differences 
are due either to situation or to skill of management or to 
other special circumstances ; the first gives rise to rent, the second 
to personal surplus. 

It is perhaps simplest to assume that part of the entrepreneur's 
receipts are due to his own labour, included in one of the Y's, and 
then the marginal producer gets wages of management and no 
profits. 

If all producers are equally favourably situated, then under 
constant or under increasing return the most skilled tends to get 
all the trade, till and unless its magnitude becomes too great for 
his ability. 

Under decreasing return many producers may remain in the 
industry, and we have the position described above (p. 50) of 
which the extreme case is when 
no producer supplies enough 
to affect the price significantly. 
Then the tth person maximizes 
(Pr~tPr) -tx'r> 80 that 

p 

/ s W/////////W Q 

mt 
DxritPr-X'r) ~ Pr-

Write (cf. p. 34) mt = tp' . x, 
suppressing the r's. 

The ¿th producer's profit is 
tx'. Dz{mt) - mt = tx'. tp'm - mt, 
where tp'm = Dx (mt) is his marginal supply price, NQ, while 
tx' = ON, and HQ is his marginal supply curve. 

F I G U R E 1 7 . 
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Then mt = f*'11)x (mt). dx = ftX tp'm . dx = area ORQN* 
J <y J o 

and tx' . tp'm = area MQRN, where QM is parallel to XO. 
The profit is the shaded portion QRM (Figure 17). 

Now take the case of only one producer (Figure 18). 
Let p =f(x) he the demand curve ; p is not now given. 
Write pm = I)x (px) = Dx (xf(x)) = NQ, and in the figure let 

DQ he the locus of Q. This curve differs both from the usual 
demand curve p = f(x) and from the offer curve y = xf(x). 

The producer modifies p' and therefore x so as to maximize 
(p—p')x, i.e. px — m, so that at equilibrium 

A, («) = Dx (px), 
and therefore p'm = pm = NQ. 

FX 

Then px = pmdx* = area 01)QN, while m = area ORQN 0 

as before. 
The profit is 

area ODQN- area ORQN = area IRQ, 
which is greater than before, if (as is usual) Dx(pm) is negative. 

§ 2. Economic rent. 
Land has so far entered into the equations only as a factor of 

production measured not in superficies, but by units of produce. 

* See Appendix, pp. 92 seq. In eaeli figure Q is marked at the position of 
equilibrium. tp'm, pm and x are variables in the integrations, but have 
their definite values ON, NQ in the statements of equilibrium. 
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Special theorems of rent depend partly on tlie different pro-
ductivity of different acres, varying also according to their cul-
tivation, partly on the assumption that the whole area cannot 
be increased. 

In fact we do not deal in this book with the influence of prices 
on new supplies of labour and capital, except in so far as labourers 
may be drawn from working for themselves or idling, and capital 
from use by its owner or non-use. Similarly we have assumed 
that land is limited, and either is all used for production for ex-
change or can be used by its owner for his own enjoyment. 

Suppose a producer of X to be able to hire labour and capital 
and to purchase materials at fixed rates, and to apply these to 
land. 

First let him cultivate only one plot and vary his production 
fa) by vaiying the amounts of labour fa) and material (y2). 

His production is xx = F(y1y^} and, if p is the selling price 
which he cannot affect, he maximizes j)Xl — p' xx, where p' is his 
cost of production per unit. 

The necessary equations are 
p'x = T j ^ + TT^g, 

L-F = L-F TTj Vi i r / y i ' 
x = F{Mi>> 

resulting after eliminating yx and y2 in p' = <px (x) say. 
Under conditions of decreasing return <f>\ (x) is positive. 
Xj is then given by 

P = VXJP'X j ) = ^ f a ) + ® j > ' i f a ) = P'M-

His maximum profit is 
iP'm-P^Xy^ x/.<*>'! fa). 

Similarly he cultivates all plots for which 

P = <PAx)+xi<tJ'i IX) 
gives a positive root. 

His local margin of cultivation is where the root of this 
equation is zero. 

The intensive margin on each cultivated plot is w h e n p = p'm, 
where p'm bx is expense of increasing the product from x to x + bx. 
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The profit x12<p'1(x1) is the rent which can be exacted for 
plot 1, if his labour and interest on capital are included in yx 

and y2. If he can command elsewhere a price P, for his abilitv 
(in excess of his labour wage) he would pav rent 

the summation being extended over all the plots. 
The above analysis applies with verbal changes to rent of 

urban land. 

§ 3. Taxation in the case of competition. 
Let a tax T per unit Xr be imposed, to be paid by the producer. 
Isolate demand f (x) and supply <p (x) of Xr, ignoring other 

commodities. 
Write i//(«) = / (x) - <(> (x). 
Before tax, let equilibrium be at i\r (x j = 0. 
Aftertax, „ „ ,, rfr (x±-£) = T. 

r = - f t r ' i ^ ) + i f V ' ( ® i ) 
Receipt from tax R = t(x1 — f ) , 

R = + + terms in f3 ,&c. 
Consumers' loss of utility expressed in money is 

C fXl/(x) dx - xjix,) - I * r / ( x ) dx + [x, - f ) / ( ^ - f ) 
Jo Jo 

= I*1 / ( ® H ® - ® i / K ) + ( ® i - f ) / ( ® i - f ) -
J ®l-i 

Write x = x' + x1 — f. 

c =//(®i-i + *') dx'-xj(xx) + (,.,-f)/^- c) 

= • • / * { / ( * ! - £ ) + « ' / ( « 1 - 0 

+ f) 
= f / K - f) + If2 . /" K - f ) + l f 3 / " K - f ) + • • • /(®i) 

- £f(*i - f ) + { / (®i) - f f (®i) +1 f V " (®i) - • • •} 

= - ® i f / ' ( ® i ) + i f 2 i / ' K ) +®i /" (®i) } + terms in f3. 

* See Appendix, p. 84. 



73 SURPLUS VALUE, RENT, AND TAXATION 

Let Q be the position of equilibrium before taxation, L after. 
ON = xx NQ =f fa) = 4> fa) MN = £ 
QN, LM are perpendicular, and AT, QII, LS parallel, to OX 

T = KL = JQ ( — /' fa) + <f>' fa) ) approx. = - f . v / r ' fa) 
C = area QHSL = \JL (JIQ + SL) = 4 £ ( - / ' fa)) (2xx-£) 

approx. 
R = area KTSL = KL . KT = t fa - £) 
Let P = area QI1TK = 4AT (I1Q+SL) = 4 ft' fa) ( 2 ^ - f ) 

approx. 
C + P - P = area ATQ = \KL .JQ = approx. 

Competition : Decreasing Return. 
F I G U R E 1 9 . 

The approximation assumes that the curvature of the arcs 
LQ and KQ is negligible. 

Similar diagrams can be drawn to illustrate other cases. 

Competition being assumed, in increasing return where pro-
ducer makes no profit 

C-B = xx£(-<#,'fa)) + p { _ 4 / ' fa) + 4,' fa)} +^>x14>" fa). 
In constant return 

C-B = $£»{-/' fa)}. 
In both cases terms involving ¿3 are neglected. 
With decreasing return, where the supply curve is that 
2761 L 
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aggregated from those of the separate producers, the producer's 
aggregate loss of profit is 

r*i f x i-f 
P = x1.<t>{x1y- <j>(x).dx — (x1 — £).<t>(x1 — £) + (f>(x).dx 

Jo Jo 
= (after reduction as in the case of C) 

{<t>'(®i)+>®x4>"fa)} + terms in 
C+P — E = H 2 ( ^ K ) - / ' f a ) ) > if f 3 is neglected. 

Hence in all cases the public, producer and consumer together, 
lose more than the revenue gains. In the case of increasing 
return the loss is greater than in that of decreasing return. 

Now, if we neglect f" (x) and <f>" (x) and regard the part of 
the supply and demand curves involved as straight lines, we have 

C - f fa) - e 

P # {x,) r, ' 
if e and r\ are the elasticities of supply and demand at x1. 

The increase of price is 

/ K - £ ) - / ( % ) = - f . / ' K ) , 

now f" (x) is taken as 0 , 
- / ' f a ) = e t 

' - / ' fa) + <t>' e~v' 
In constant return the increase of price is r, in increasing 

return it is greater, and in decreasing return, less than r. 

Tax receipts are at a maximum when r is so chosen that if xT 

is the amount exchanged, xT.\j/(xT) is a maximum. [This is 
where a monopolist untaxed would fix the quantity produced.] 

If f (x) and <p'(x) are taken as constant, which is a less 
reasonable assumption than before, since the change of x is now 
considerable, and x1 is the amount that would have been 
exchanged if there had been no tax, it is easily shown that (p. 59) 

xT = and therefore f = xT, r = —%x1 . \J/' fa), 
ii y fa), c = I K 2 ( - / x ' f a ) ) , p = W • <*>' fa), 

C + P — li = in decreasing return, 

C — R = \li in constant return. 
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The excess of the loss to the public over the gain to the revenue 
is half the revenue receipts in these cases. 

In increasing return 

c - x = W ( - f ' M - 2<fi'(*i)) 
= ¿ ¿ 2 + 1 « i 2 (-</>'fa)), 

and the excess of the loss is even greater. 

§ 4. Taxation in the case of producer's monopoly. 
At tax T, a monopolist maximizes (\J/ (X) — T) X, say at xT, where 

^(xT) + xTy (xT) = T, 
R = TXT= XT ft fa) fa)}. 

Without tax % would have been produced, where 
f(x1)+x1f(x1) = 0. 

Then P, now taken as loss of profit and tax, 

= x1^(x1)-xT(^(xT )-t), 

and C=J f(x)dx-x1f(xl)+xTf(xT). 
XR X r* i 

C+P-R = -x1cp (x1) + xT<f> (xT) + / f(x)dx. 
J XT 

Write Xj — xT + f and take the case where the supply and 
demand are straight lines, so that 

/ " (x) = (.vo = y fa) = o. 

Then, expanding by Taylor's series,* we find 

T = ^ f a - 6 + fa-fH'fa-6 = - 2 f t ' f a ) , 
R = - 2 ® T f t ' fa), C = -\f fa). ¿ (2^1-0. 

p = fa) - fa - a fa) - ft' fa))+r 

= i f fa) - f a - a ^ fa)= ( ® o + * 
US U/J^ 

= - fa) + ^ = V fa) • (£2 - 2«if), 
C + P - P = p fa) - (4 f2 + ftj)/' fa). 

* See Appendix, p. 84. 
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Hence on the same assumption 

C = /" fa)  
P 2^'fa) 2(e-v)' 

Hence C = \ P in constant return, 
C>\P in increasing return, and C = P, if for example 
^ , D • , = ìf'> ana 0 < \ P in decreasing return. 

In constant return, 

In decreasing return, add ¿2 <f>' fa) to this expression. 
In increasing return, if for example <p'(x) = •§/'(«), 

In the same case of monopoly, i? is a maximum when the 
quantity sold after the tax is imposed makes x (\jr (®) + xf (x)) 
a maximum, and then 

yjf fa) + 3 xTf FA) + x\ f" FA) = 0. 

Take again the case where 

f"(x) = <p"(x) = y ( x ) = o. 

Before the tax was imposed 
i// fa) + xx fa) = 0. 

Then, if xl = xT + £ 

0 = ^ f a - 0 + 3 f a - f ) ^ ' f a = fa) + (2»!-3f).Vr' fa)-

•'• £ — a n d ®T = "2®! . 

r = — 2 f i / / f a ) , as before, = — x^' fa) = fa). 
Hence the maximum yield is when the rate of tax equals the 

difference between the monopolist's selling and cost prices before 
the tax. 

R = yield of tax = ^x^ fa). 
P = + = = | 
C = — l » i 2 / ' f a ) , = |22 in constant return. 
C + P - P = P ' r g t f ; 2 ( - / ' f a ) ) = f P in constant return. 
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In increasing return in the case when <j>' = \ f\ C = P = f R, 
and C+P-R = 2R. 

Under monopoly, the increase of price (whether R is maxi-
mized or not) is 

/ ( ® - a - / f a ) = - i f M + f / " fa) - + . . . , 

= ̂  I^H • ¿ y i s 0orifisne^ible-
We have then from the equation for C given above 

C = (a;, — x increase of price, 

x 1 + x T . . = x increase ot price. 2 ^ 
In constant return, increase of price is - • 

a 

In decreasing „ „ „ „ < T-

In increasing „ ,, ,, > - , and, in the case 
¿t 

where <f>' = \ / ' , = r. 

Under monopoly, if the tax is not per unit but a lump sum, 
the price is unaffected and the amount sold unaffected ; the whole 
is paid by monopolist and can theoretically be increased till it 
nullifies his profit, and R = ¡»ft fa), viz. twice the maximum 
under a tax per unit. 

NOTE.—The term ' consumer's surplus', applied to TJ (x)—xf(x), 
has given rise to misconception, and has been avoided here. But 
it is useful to distinguish two parts of C (pp. 72-3), viz. 
? 7 f a ) - i 7 f a - £ ) , or MLQN (figure 19), which is the loss of 
utility, and fa - 0/fa - £ ) - ^ . / f a ) , or OSLM-OHQN, which 
is the increase of cost (which is negative for large elasticity). 
The two together give QESL or C. 

Thus if weekly purchases of tobacco before and after taxation were 
4 oz. at 3d. and 3 oz. at 5d., one ounce worth approximately 4d. 
is lost and 3d. more is spent. The loss to the consumer in this 
case is taken as 7d. 
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S U M M A R Y O P T H E M A T H E M A T I C A L I D E A S 

A N D F O R M U L A E U S E D 

THE following notes are only likely to be useful to those who 
have at some time studied the elements of the calculus in an 
ordinary course. Only a very limited region of the calculus is 
used in ordinary economic reasoning, but in some respects it 
is of a kind to which prominence is not given in the usual 
mathematical training, while much attention is devoted to other 
aspects of its use, in physics, &c. It has therefore seemed worth 
while to trace the theory of the calculus from the beginning- up 
to the theorems and methods used in the text, to enable readers 
to refresh their memories about the particular results wanted 
and to become used to the notation adopted. The definitions 
and proofs are not rigid in the mathematical sense, and any 
careful reader will detect numerous lacunae. 

The results may, however, be accepted as true in the sense and 
with the limitations used in the text, and complete proofs can 
readily be found by those who have sensitive mathematical 
consciences. 

Functions. 

If two variables x and y are so related that y is determinate 
when x is given, y is said to be an (explicit) function of x. This 
relationship is written y -=f(x); but since several functions 
may be involved in the same problem, variants o f / ( e . g . F, <£...) 
or other letters (x, U...) are used also to express the functions. 

If two or more variables x, y, «.. . determine another variable, 
u, then u =f(x,y,z...). 

If x and y are connected by any equation such as 
0 + ^ + 8 = 0, x" + 7 = 0, sin (x +y) — 3 = 0, 

the relationship may be written generally as 
f{x,y) = 0. 

f is then said to be an implicit function. 
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It is often not necessary to know the form of the function nor 
to be able to evaluate it. Important relations can be established 
and results obtained from the mere knowledge that certain 
quantities determine others. 

The function contains numbers and often constants (generally 
written a, I, c...), that is quantities which remain unchanged 
while x,y... vary. It is necessary to know these numbers and 
constants if the function is to be evaluated numerically. 

f(xx) means the value of f{x) when the particular value xt is 
given to the general variable x. 

f(x) is said to be continuous over the range x = a to x = b, 
when x can take all values from a tc b, to each of which there is 
a real finite value o f / ( x ) , and when, if x makes a finite change, the 
change in f(x) is also finite. This may be explained by saying 
that a continuous function can be graphically represented by 
a line drawn without the pen leaving the paper or marking a 
sharp angle. The definition here given is only a preliminary or 
popular one, but it is sufficient for the sequel. 

Derived functions or differential coefficients. 

Let the values of y corresponding to a range of values of x be 
plotted on squared paper, so that when x = OM, y = MP, and 
as x increases from OM to ON, P moves along a curve (or straight 
line) to Q. The line PQ is the graph of the function ; y = f(x) 
is the equation of the curve (Figure A, p. 81). 

The point P is written (x, y). x and y are the co-ordinates 
of P; x is the abscissa ; y the ordinate ; OX, OY are the axes of 
reference. 

Let the co-ordinates of Q be x + h and y + k, so that (if PL is 
parallel to OX and meets NQ in L) MN = h,LQ = k. 

Draw PT to touch the curve at P, and join PQ, and produce it. 
Then 

tan QPL = ZQ + PL = A/A = (y + k-y)/h = (f(x + A) -f(x))/h. 

Now let Q approach P along the curve. The chord PQ rotates 
about P.-till as Q reaches P it coincides with PT, and the angle 
QPL becomes the angle TPL = 6, say. 
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Tan 6 is the limit of (f(x + /i)—f(x))//t,. when h approaches, 
and finally becomes, zero. This result is written 

tan 0 = J J j (i-*0) = Bxy * = f («•), 

each of these expressions being a convenient way of writing the 
process and result briefly. 

For example, the graph in Figure A represents 
y=f(x) = 1 + 7X-X2. 

Tanf? = Dxy = f (x) 

- JL, h i""*0) 

T + 7/(-2 Jix — h2 

- L — j — = 
Thus when x = 2 (and y = 11), the point P in the figure, 

f ( x ) = 7 - 4 = 3. 
The tangent at P rises 3 units vertically to 1 unit horizontally. 

The gradient is 3. 
/ ' (®) is the rate of increase of f (x) per unit change of x at 

the point x. 
f (x) is called the derived function, the derivative, the 

differential coefficient or the gradient of f(x). 
When f'(x) is positive the curve rises to the right. Where 

f'(x) is zero (x = 3\ in the figure) the curve ceases to rise. 
When / ' (x) is negative (x > 3^) the curve falls. 

The maximum of f(x) is when f (x) = 0, if (as in this case) 
/ ' ( « ) changes from positive to negative as x increases through 
the maximal position, that is if at this point the curve is concave 
to OX (and above it). 

If now we take the curve 
y = x1 — 7x+ 15, / ' ( i s ) = 2x — 7. (Figure B.) 
f (x) = 0, when x = 3|. 
f (x) < 0, when x<3%. f'(x)> 0, when x>3%. 
f(x) is a minimum when x = 3|. 

* Formerly this expression was written . Since this suggests a fraction 

and not the result of a process, the form here used is to be preferred. 
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The minimum of f(x) is when = 0 and the curve is eon-
vex to OX (and above it). 

These results are general. The first test for the presence of 
a maximum or minimum is that f (x) = 0. To decide whether 
this gives a maximum or gives a minimum it is necessary to 

know the sign of / ' (x) for values of x to the left and right of 
the maximal position, unless (as is very often the case) we know 
a priori which to expect. 

yl+7x—x2 

F I G U R E A . 

1 2 3 4 S 
y — x2 — 7> + 15 

F I G U R E B . 

Successive differentiation. Expansions. 
The process of differentiation can of course be applied to the 

derived function. We thus obtain the second derivative, and so 
on successively. 

Thus in the first example taken, 
f (x) = 7-2x. 

2761 M 
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The second derivative 

I f . / " ( » ) is negative, / ' (a) if positive is becoming less as x 
increases, and if negative is becoming numerically greater 
negatively. 

A little consideration will show that if f" (x) is negative the 
curve is concave to OX (if above it), and if f" (x) is positive 
the curve is convex. 

The complete test for a maximum ( i f f " (x) is not zero) is 
that f (x) = 0 and f" (x) is negative, and for a minimum that 

f (x) = 0 and / " (x) is positive. 

In the adjacent Figure (C) of a convex curve, W i s the tangent 
at P and meets the ordinate of 
a neighbouring point Q at T. 
PL is parallel to OX. 

Write 
8® = h = MN, by = k = LQ. 

bx and by are small finite in-
crements or ' infinitesimals ' of 
x and y. 

LT = PL tan LPT = hf (x). 
by = NQ-MP 

=f(x + h)-f(x) = LQ 
= LT+ TQ = /' (x) ,bx+ TQ. 

TQ, the departure of the curve from its tangent, diminishes as 
Q approaches P. 

We shall immediately give an informal proof that TQ is com-
parable with P , i.e. with (8a;)2. Assuming this we have 

O M N 
F I G U R E C . 

by = f (x) . 8a; + a quantity involving (oa;): 

^ By 

'' bx 

. . Formula 1. 

—f (x) + a quantity involving bx, and in the limit, 

when h is zero, - - = D.ry. 
bx xy 

To obtain a rough proof of the proposition just used, draw the 
tangent at Q to meet MP at Z". The gradient of this tangent 
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is f (x + h). In the case where Q is above T, it is evident (the 
curve being continuous and h small) that QT' cuts PL between 
P and L and therefore QL<hf (x + //). Hence 

hf (x) <f(x + A) -/(») < hf (x + h), 
r and f(x + h) -f{x) = hf {x + ch), 
where x + ch is some value intermediate between x and x + h, and 
continuity is assumed. 

The same result is obtained if the curve is concave, and this 
proposition is true for all continuous functions. 

Hence similarly 
/' (x + ch) -/' (x) = chf" (x + cxh) 

•where cx, is intermediate between 1 and c. 
Combining these results, we have 

=/(x + h)-f(x) = hf (x) + ch*/" (x + Clh), 
where c and cx are proper fractions, and h = hx. 

A change in y is therefore obtained approximately by multi-
plying the change in x by the ufirst derived function, the 
equation being the more exact the smaller the change in x. 

This result is fundamental in a considerable part of the appli-
cation to Economics. 

A rough examination of the general expansion of f(x + h) 
can be obtained as follows. 

Take x as fixed, say x0, and h as variable. Write 
f(x0 + h) = F{h). 

Thus in Figure C let 
OM = 3-0, MP =f(x0), m =/(*0 + ^) = F{h). 

Suppose that F(h) is expansible in ascending powers of h with 
all the terms finite and the series convergent, i. e. tends to a 
unique finite limit when the number of terms is increased 
indefinitely. 

Write F(h) = a0 + axh + a^h? + a3h3 + a^i* + . . . , where a0, ax... 
are constants to be determined. 

Differentiate successively with regard to h. 
F' (h) = ax + 2a2h + 3a3h1 + 4aAhi+ ... 
F" {h) = 2a 2 +3 . 2a3h + 4 . 3 a j i i + ... 
F"'(h) = 3 ,2a3 + 4 . 3 . 2aj i + . . . . 
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In each of these equations take the case where h = 0. 

a0 = F(0), a1 = F'{0), a2=l-F" {0), 

where F'(0) is the result of writing h = 0 after J1 (A) is differen-
tiated and so on. 

Then J ' (0) is the gradient of the curve PQ at P and therefore 
is the same as f (x0), that is the result of writing x = x0 in the 
derivative of _/(»). Similarly F" (0) =f"(xQ) and so on. 

W e have then 

f(x0 + h)=F(Ji)=f(xQ) + hf'(xo) 
Formula 2, 

the process being continued as far as we please. 
This is Taylor's Series. 
In the functions used in the text it is generally the case that 

the successive terms become rapidly smaller over the part of the 
curves that are considered in the neighbourhood of equilibrium. 
Such an assumption is much more hazardous when larger changes 
are considered, as in the cases of taxation and monopoly 
(pp. 60 and 75 seq). 

Standard derivatives and rules of differentiation. 

The following are standard derived functions, as shown in any 
text-book on the calculus : 

Dx (,xn) = nxn~\ 

where n is any positive or negative integer or fraction ; 

e.g. I)xVx = ix-K 

J)x (ax) = ax. loge a. Dx («*) = 

V x (log„ x) = \- log«, e. Dx (log, x) = ~-

Dx (sin x) = cos x, Dx (cos x) = - sin x, I)x (tan x) = sec2 x, 
where x is the radian measure of the angle. 
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Also the following working rules are easily proved from the 
definition of a derived function : 

Bx(of(x)) = a.f fa; 
e.g. - # X ( 3 « ) = 3> - ^ X I 3 ® 2 ) = 3 x 2 « = 6«. 

DJ(ax) = H' (ax) ; 
e.g. Z>x sin (ax) = a cos a«; 

K (/(*)+«) = / » ; 
e.g. I ^ f a + 3 ) = 2«. 

e.g. Dx (x + af=2(x + a), for if / ( « ) = «2, f (x) = 2 r. 

These rules may he combined, thus : 
Dx {af(bx + c) + d} = ab ./' (bx + c) ; 

e.g. {2 sin (3« + 4) + 5} = 2 x 3 cos (3«-f 4) = 6 cos (3®+ 4). 

If f(x) and <£(«) are two functions of x, the following rules 
can be obtained : 

jDx{/(X)±4>(X)} =/>)± *'(»); 

e.g. Dx(x2 + \ogex) = 2x+l/x. 

Dx { f ( x ) x * ( * ) . } = / (x) x 4> (x) + / ( « ) x tf (x) ; 

e.g. I)x («2 sin x) = 2 «s in« + a;2 cos«. 

P X (*)} = { / ' («) X <F> («) - / f a X 4>' fa} - F FT FA)2; 

e.g. Fx (tan x) = (sin «-Hcosx) 
= {cos « X cos« —sin « x ( — sin«)} -r-cos2« 
= (cos2« + sin2«)-i-cos2« = 1 - f tan 2 « = sec2«, 

as above. 
If y = F(u), where u = / ( « ) , 

by by bu F (u + bit)-F(v) /(« +8«)-/"(«) — ^ — ~ X J 

bx bu ox bu bx 

identically. 
In the limit, obtained by diminishing bx and consequently 

bu and by also, Dxy = DuF(u)xDx/(x)-, 
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e.g. if F stands for loge, ./"for sin, and so u = sin», 

A {loge (sin x)} = I)u (loge u ) X (sin *) 
1 
- x cos x = 

sin x 
1 

X COS X = cot X. 

Dx {sin (x2)} = 2x cos (x2). 

These forms and rules are sufficient for the differentiation of 
common functions of one variable. 

Functions of two or more variables. Partial differentiation. 

Let a variable z depend on two other variables x and y, so that 
z=f(x,y), and let x and y depend on another variable t. 
Required to connect a change in t with a change in z. 

To fix ideas, suppose a point to be moving in the plane XOT 
(Figure D), and at any time t to be at the point K(x,y). Let 
a vertical KP (z) be erected whose height is f(x, y). Then as 
the point moves about the plane XOT, P will move always 
vertically over the point on a surface whose equation is 

Consider movements parallel to OX, i. e. to the plane ZOX. 
If the point moves from. K to L, y is constant (say yx) while x 

varies, and P traces out a plane curve PQ. The gradient at 

F I G U R E D . 
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P of this curve is jDxf(x,y1), that is the result of differentiating' 
f(x,yt) where yx does not vary. This expression is variously 
written 

Dx (z) (y const), c - > / ' {x, y) (y const), fx, and Formula 3. 

f x is at once the briefest and most convenient of these forms. 
It means the result of the process of differentiation with respect 
to x applied to the function, y being- kept constant; e.g. if 

f{x,y) = ax* + by\ Jx = 2 ax, f y = 2 by. 

This quantity f x is called the partial derived function (or 
derivative or differential coefficient) with respect to x. 

If the point P had moved along the tangent at P in the plane 
of PQ it would have risen Jfx, to 1\ when x increased to x + k, 
h being KL. 

Similarly if we take movements parallel to OY or the plane 
ZOY, let the point in the plane XOT move from A" to M 
(KM = k) and P trace the curve PR. Its initial gradient 
would be f y , and if it had moved along the tangent to PR it 
woidd have risen kfy. 

Now if li and k are small the heights of Q and R only differ 
from those obtained at T and the corresponding point under R 
by quantities involving h2 and k2 (by formula 1), which are 
therefore very small. The rises in the two paths are therefore 
very nearly 7fx and kfy. 

Further it can be shown (though the complete proof is diffi-
cult) that the rise along the path QS, where KLNM is a rect-
angle and ]S'S is vertical, differs from the rise along PR only by 
a quantity of the order hk. 

If, then, the point in the plane JOY moves from K to Ar by 
any path and in consequence a line PS is traced on the surface, 
the increase of height from P to S differs from hfx + kfy by a 
quantity involving h2, k2, or hk as factors. Write hz for this 
increase. 

hz = z + hz-z =f(x + h,y + k)-f(x,y) = hfx + kfy  

=fx . èx+fy . òy, approximately, 

where 5x, hy are the increments of x and y. 

Formula 4, 
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Let ht be the time interval between K and N. 

h z / h x , 8.'/ • i i 
M = J x - s7 +*fV ' u a PP r o x l m a t e l 7-

Now proceed to the limit when bt approaches zero, and conse-
quently bx, by, be approach zero, and the quantities 1"-, k2, Ji/c,&c. 
which are omitted in Formula 4 vanish. We have 

Vtz=fx.Dtx+fy.Bty. 
Thus if z = ax2 + by2, -where x = cos t, y — sin t, f = 2 ax, 

fy = 2by, Dtx = — sin¡f, Dty = cos/, and 
Dtz = — 2 a» sin t + 2by cos t 

= — 2a cos t sin t + 2b sin t cos t = (b—a) sin 2 
[This result may also be obtained directly by writing 

z = a cos2 t + b sin2 t, 
but it is not usual that the substitution should be so simple.] 

The equation does not depend on the geometrical illustration 
but is universally true. For example we may take t, which is an 
independent variable completely at choice, as identical with x, 
and obtain Dxz = f x + f y . Dxy . . . Formulas. 

The result may be generalized to any number of variables, so 
that if z =f(xlx2...xn), 

I>tz =fx, • I*tx 1 +fx2 • Vtx2 +••• + / x n • Dtxn • Formula 6, 
and DXiz =/T, +fxa. l)xx2 + ...+fXn.I) 

x.xn • • Formula 7. 
e.g. If z = x2 + x2x3 + xxx3 =J{x1,x2, x3), 

fxi = 2 »x + x3, fXi = x3, fx3 = x2 + xx, 
and Dxz, = 2xx + x3 + x3. Dxx2 + (x2 + xx). JDXi x3. 

We cannot evaluate this till we know the relationship between 
x2 and xx and between x3 and xx. 

The formula is commonly used as 
80 =fXi.bx1+fx^.bx2+ ... +fXn.bxn . . Formula 8, 

the variable on which depend not being named. 
In this form it is very important in Economics. 
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In words, if a quantity z is dependent on variables 
and these variables owing- to a common cause have at the same 
time small increments bx1, dx2..., whose squares and products 
are negligible, then the resulting increment in z is obtained by 
adding the increments in xltx2..., each multiplied by the partial 
derivative of z with respect to it computed on the assumption 
that the other x's do not vary. 

Maxima and minima. 

In Figure D (p. 86) z is a maximum or minimum where the 
tangent plane to the surface on which P moves is horizontal, so 
that when motion takes place in any direction the point starts 
along the plane and then falls below it (in the case of a maxi-
mum), or rises above it (in the case of a minimum). Where 
z =f(x,y) and the tangent plane is horizontal, eveiy line in it 
is horizontal, so 

that f x = 0 = f y ) since these are the gradients 
in two of the directions. 

More generally, when z =f(x1,x2,...xn), z cannot be a 
maximum or minimum, unless the effect of an infinitesimal change 
of any of the a;'s is to make 8z = 0. From formula 8 this will 
be the case if 0 = A = / x 2 = • • • = / * „ • • • Formula 9. 

If we know a priori, as is often the case, that there is a maxi-
mum or a minimum in the region considered, these equations 
are sufficient. If not, terms of a higher degree in the increments 
must be examined. 

[e.g. z = x*+f + 2x+4y = {x+ 1)2 + (y + 2 ) 2 - 5 , 

is clearly a minimum when x = — i,y= —2. 

In this case, f x = 2x+2, = 0 if x = —1, 

and f y = 2 y + 4 , = 0 if - 2 . 

If, however, z = x2 — 2 xy + 2y2 + 2 x + 4y, 

f x = 2x-2y+2, f y = _ 2 « + 4y + 4, 

and these are zero if x = —4, y = — 3. 
All we can.say without further examination is that, if there is 

a maximum or minimum, it is at this point.] 
2761 N 
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It is often the case that xx, x2... are not independent, but are 
connected with each other by one or more equations. The equa-
tions 0 = f X i =/X2 = will not then in general be consistent 
with the connecting equations and the partial derivatives cannot 
all vanish together. The procedure then is to eliminate as many 
of the x's as there are connecting equations and proceed with the 
remainder taken as independent variables. 

[Thus, if z = x2 + y2 + 2 x + 4y and y = x + 2, 
^ = «2 + (x + 2)2 + 2a; + 4 (x + 2) = 2 « 2 + 10A-+ 12, 

Dxz = 4x+ 10, = 0 if x = - 2 - 5 , 
and, since 7/2xz = 4 and is positive, this gives a minimum for z, 
viz. i ' z• 

This is the solution of the problem of finding the lowest point of 
the given surface in the vertical plane y = x+ 2. The minimum 
of ^ without any restriction is —5 (p. 89) when x = — 1, 
y - -2.] 

The process of partial differentiation can be carried on suc-
cessively. Thus, if z =f(x,y), fxx = Dx(/x), y const., is the 
second partial derived function of z with respect to x. It will 
measure the change of gradient of the curve PQ (Figure D, 
p. 86). Similarly/ measures the change of gradient of the 
curve PR. fxy means />„()§!), x const.; it can be shown, but 
not easily, that the same result is obtained from Dx(fy), y const., 
so that fxy = fyx. This measures the change in the gradient of 
the tangent parallel to the plane ZOX due to a movement of the 
section in the direction OF. 

The more complete statement of the equation to which 
8 2 ^ f x r S « 1 + / X 2 . % 2 + . . . 

is an approximation, is 
8« = / X i . 8 « 1 + / a . 2 . 8 % + . . . 

1/ 2 ' ; Formula 10, 
+ 2 fxtxJ^X-L . 0X2 + . . . } j 

+ terms involving cubes and higher powers of 8«, ; 
where all possible squares and products are included in { }. 
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An expansion by tliis formula is used on pp. 17-18 above. 
An investigation of the complete formula can be made on the 

lines of that on pp. 83-4 and formula 2, as follows. 
Write 

f{xa + A,y0 + k) = F(k, k) 
= a + ¿j A + b2 k + A2 + c2 A A + c3P + (lx P + d2 A2 k 

+ d3AA2 + dik3+.... 

Differentiate successively with respect to A and to A. 
Fh = b1 + 2 eft + c2k + 3 dft2 + 2d2Ak + d3h2 + ... 
Fhh = 2c1 + 3. 2d1/i + 2d2/c+ ... 
Fhh= c2 + 2d27i + 2d3k+ .... 

Take the case in each equation where A = 0 = A. 
a = F(0, 0), t/1 = Fh, c1 = %Fhh> c2 = FhJc, and similarly 

¿2 = Fk, c3 = iF^, in each case 0 being written for h and A 
after differentiation. 

But then (as on p. 84) Fh = the gradient at P of the curve PQ 
(Figure D, p. 86) F,e = fyo, and similarly Fllh = f w &c. 

.-.5z = f(as0 + A, y0 + A) -f(x0, y0) \ 
= + + 2 M f X 0 y 0 + ^/y<>y0) \ Formula 11. 

+ terms involving cubes of A, &e. j 
This result can easily be extended to any number of variables. 
The above analysis is not a proof, but a determination of 

coefficients on the hypothesis that an expansion of this kind is 
possible. 

With two variables f { x , y ) is a maximum or minimum at 
(x0,y0) only if fXt> = 0 = f and the complex term involving 
squares is of the same sign for all variations ; this is the case if 

f x 0 x o x f y < 1 y 0 > ( f x 0 y 0 Y - Given this condition, f(xQ,y0) is a maxi-
mum or minimum according as f x 0x 0 is negative or positive. 

Tangents. 

It is often necessary to determine I)xy when we are given 
f{x,y) = 0. f{x,y) = 0 is the equation of a plane curve and 
I)xy is its gradient at any point (x, y). 

Write z =f(x, y). 
2761 N 2 
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Then 8 z=ft.bx+fv.by and Bxz = fa+f Dxy (pp. 
87-8, formulae 4 and 5). 

But since z=f(x,y) is always zero, z is invariable,-8z is zero, 
and Dxz is zero. 

••• 0 =fx+fy.Dxy, or Dxy = -fx/fy. 
The tangent at P, which we will call [xlt yx) (see Figure A, 

p. 81), is a line through fa, yx) with gradient Dxy, and its 
equation is therefore 

V-Vx = tan TPL = (x-xx) . Dzy, 
that is ( ® - ® i ) - f X i + {y-yx)-fyL = 0 . . Formula 12, 

where fxt'fyi are the results of writing x = xx, y = yx in the 
partial derivatives of / f a y ) . 

Thus, if / f a y) = ax" + 2 hxy + ¿y2 — c = 0, 

/ z = 2«® + 2/5y, fy = 2/«s+23y, 

and the tangent at a point fa,yx) on the curve is 

(x-xx) {2axl + 2/iyl) + (y-yx) (2hxx+2byx) = 0, 

that is x (axx + /iyx) +y (hxx + byx) = a^2 + 2 / fa yx + by* 

Notice that we can write an equation for Bxy at once from 
such a curve as ax2 + 2 hxy + by"1 — c = 0, thus 

2 ax + 2 hy + I)xy{2hx + 2by) = 0. 

Integration. 

Integration is the process of finding the original function when 
the derived function is given, and is the reverse of differentiation. 

The symbol J signifies integration, and is defined by 
Jf'(x).dx=f(x) + C, 

where C (any constant) is introduced, since evidently 
nxif{x) + c} =f(x). 

Thus / xn~ldx = -xn+C, since X» f-xn) = xn~\ 
J n x\n J 
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The most important use of integration in the present connexion 
is in its relationship to areas. 

Write f'{x) = F(x). 
Let CD be the graph of y = F (x) from x = a (OA) tox = b (OF) 

(Figure E). 
Divide AB into n equal parts 

ANV AT... each = 8a = (b-a)/n. 

Q2 
P?. 

S? 
P. 

R4 
f}, 

Q2 
P?. Rî 

R4 

Q 

c 

Pi / r2 

Rî 
Q 

c 

r2 Q 

c Ri 

O A N, N 2 NJ N 4 

F I G U R E E . 

Let i\7jP1, i\r2P2... be ordinates, and complete the rectangles 
as in the figure. 

Take the case of a curve that rises from C to D ; other cases 
can readily be handled in the same way. 

Let S, S' be the areas of the rectilinear figures 

ACB1P1B2P2. ..D, and AQPX QXP2...D. 

Then the curvilinear area ACPlP2...D is intermediate between 
S and S'. S' — S= sum of such areas as QRlt Q^B^..., and 
approximately = bxxFD, where CE is parallel to AB. When 
n is large and therefore 8« is small, this difference is negligible 
as compared with S, and S may be identified as the area of the 
curve. 

Take ?i so large that (&x)2 can be neglected. 
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Then from p. 82, formula 1, 
f(a + bx) —f (a) = f (a). bx = I (a) . bx = AC. AA\ 

f(a + 2bx)-f(a + bx) = F(a + bx) . òx = jV,Px. NXN2 

f(a + n . bx) —f (a + u - 1 bx) = F (a + n - 1 bx). bx. 
Adding we have, since b = a + nbx, 

fib)~f{a) = sum of such areas as ACEXN, N1P1B2N2 

= S with sufficient approximation 
= area of curve. 

It is not difficult to verify that this final equation is absolutely 
true, when we suppose n indefinitely increased. 

The area of the curve is the limit of the sum of the rectangles 
F(x). bx from x = a to x = b, when n is definitely increased, 

" ,6 
= limit of ^ F(x) . bx and this is written / F (x) . dx. 

a J a 

The whole process is then summarized as 

area of curve = f F(x) dx = f /'(x) dx = f (b) -/(a) \ Formula 13 
J a J a 

Thus the area from OA* to the curve y = x2 is for any value of x 
X 

x 2dx = = %x3. J. 
Note on elimination. 

Two linear equations 

axx + \yJfCx = 0, a2x + b2y + c2= 0 
give one pair of values of x and y, viz. 

x _ _ y _ 1 
Va-Vi cxa2 — e2ax — axb2-a2bx 

Or we can eliminate y and obtain one equation for x, 

(axb2—a2bx) x + cxb2—c2bx = 0. 

From two equations involving three quantities x, y, z, 

alx + b1y + c1z + di — 0, a2x + b2y + c2z + d2 = 0 
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we can eliminate one (z), and obtain a relation between the others, 

KC2 - a2cl) X + (V2 - KCl) y + <h ^ ~cld2= 0-
Or we can say, from the first equation, 

* = ~ - ( a i °°+i>iy+di\ 
61 

and when this value of z is written in the second equation we have 
ox (a2x + b2y + r/2) - c2 (axx + bxy + dx) = 0. 

From this it can be seen that, if we have n linear equations 
connecting n quantities, we can determine the quantities separ-
ately, and that, if there are more than n quantities, we can 
eliminate n— 1 of them and obtain one equation involving the 
remainder; the procedure being virtually to solve for n— 1 
selected quantities from u — 1 of the equations and substitute the 
results in the first equation. 

With linear equations, if the quantities a, b, c... and n are 
given the solution is only a matter of patience. When we have 
the same problem involving squares, products, or other functions 
of x, y..., the procedure is the same essentially, though it is not 
always possible to carry it out by simple methods. 

Thus suppose we have three equations involving four quantities 

A («. v> x,y) = 0, / 2 ( « , v, x, y) = 0, / 3 ( « , v, x, y) = 0. 

Solve the third as an equation in y, obtaining 
y = F(u, v, x). 

Put this value in the first and second, obtaining 
Fx (u, v, x) = 0, F2 (u, v, x) = 0. 

Solve the last equation for x, obtaining x = $ (u, v) and put 
this value in Fx (u, v, x) = 0. We have then one equation in-
volving u and v only, x and y being eliminated. 

e.g. Eliminate x and y from the equations 

u2 + v2 + x2 = 20, u2 + 2v2+y2 = 30, u + x+y=l0. 

From the second and third equations 

u2+2v2 +(10-u-x)2 = 30 
x = 10 — u+ - /30 — u2— 2v2-
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Then from the first 

« 2 + «;2 + ( 1 0 - « + V 30 — H2—2 v2)2 = 20, 

which reduces to 
6 u4 + vi + 6 u2 v2 — 12 0 m3 - 120 uv2 

+ 900?i2 + 580t2 — 2000/i+100 = 0. 
Thus the actual solution rapidly becomes laborious in quite 

simple cases. 

When there are as many (n) equations as variables, and n— 1 
variables are eliminated, the remaining equation in one variable 
is not generally linear and there may be several real roots, each 
giving a set of simultaneous values for the variables. The 
equations are then said to have multiple solutions, and some 
further knowledge is necessary to know which is appropriate to 
the problem. 
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factors, 28. 
Joint supply, 65; use of factors, 

31, utility, 15, 18. 

L 
Labour, 40 ; disutility of, 40. 
Land, 42 ; rent of, 70. 

M 
Margin of cultivation, 71. 
Marginal supply price, 34, 69. 
Marginal utility, 9 ; of money, 12, 

21, 43, 55. 
Market, 8, 20. 
Marshall, Dr. A., 9, 39, 65. 
Maximizing equations, 21, 58. 
Maximum, 80, 89; effect of small 

change on, 24. 
Minimum, 80, 89. 
Money prices, 12. 
Monopoly, 22-5; bilateral, 62; 

universal, 26. 
Monopoly, equilibrium under, 59. 
Monopoly of all commodities, 60; 

of factors of production, 61. 

N 
Notation, 46. 

O 
Offer curve, 7, 8, 10, 13, 31. 

P 
Partial derived function, 87; dif-

ferentiation, 86. 
Personal equations, 21, 51, 58. 
Pigou, Prof. A. C„ 34, 37, 45. 
Prices, 8, 12, 19, 29. 

Producers' goods, 65 ; surplus, 69. 
Production, 28, 49 ; joint, 31. 
Production function, 29, 36, 48. 
Profits, 37, 59, 69, 70, 72, 74. 

R 
Rent, economic, 70. 
Rules of differentiation, 84 seq. 

S 
Satisfaction, 1, 13. 
Saving, 51. 
Second derivatives, 81. 
Share of factors, 44. 
Stability of equilibrium, 37, 53. 
Substitution, law of, 28, 49. 
Successive differentiation, 81. 
Supply, 10; aggregate, 25; com-

posite, 65-6 ; curve of, 10, 13, 
30 ; elasticity of, 32 ; joint, 65. 

Surplus, consumers', 77; producers', 
69. 

T 
Tangents, 91. 
Taxation, 72 seq. ; maximum re-

ceipts, 74, 76 ; monopoly, 75-6 ; 
yield of, 72 seq. 

Taylor's series, 84. 

U 
Utility, 3, 6, 64 ; equations, 21, 50, 

58; function, 3, 6; surface, 14, 
15 seq. See marginal utility. 

V 
Value in exchange, 3. 

W 
Work, 40. 
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